Skip to main content

Author: admin

Progress in titanium investment casting

Progress in titanium investment casting

a speech by Florian Bulling

Introduction

Titanium alloys are known for their high mechanical strength, low density and high corrosion resistance. Therefore, their application is mainly in the field of aerospace industry, but also in medicine as implant material. The alloy Ti-6Al-4V, also known as Grade 5 titanium is the most widely used alloy. Other titanium-based alloys are the intermetallic compounds NiTi, known as Nitinol®, which is used for its superplasticity as stent material or as actuator. Another important alloy is the intermetallic compound TiAl, which is used in aircraft turbine engines.

The excellent and outstanding properties of these alloys are opposed by the difficulties in manufacturing titanium alloys. The high chemical reactivity of titanium melts allows only cold-walled crucible melting techniques such as vacuum arc melting.

Induction melting and casting was so far compromised by crucible reactions [1-4]. A very recent review on crucibles for induction melting of titanium alloys can be found in [4]. Conventional crucible materials such as alumina or quartz are not suitable due to the decomposition of the ceramic in contact with the titanium melt. Even high stability refractories such as zirconia or yttria, which are used as crucible coatings, are not stable enough [3].

A new ceramic material based on calcium zirconate (CaZrO3) [1, 5-7] was recently introduced. Calcium zirconate is a synthetic ceramic material that is produced by melting a stoichiometric mixture of calcia and zirconia in an arc furnace (fused CaZrO3). Alternatively, it can be produced by in-situ reactive sintering. Calcium zirconate shows very promising properties as crucible as well as shell mold material. The present paper provides a comparison of a standard investment with yttria front coat compared to the new, silica-free shell mold and crucibles based on calcium zirconate.

Experimental

Crucibles

The production of the crucibles was in line with the procedure described by Schafföner et al. [8]. The crucibles were manufactured by cold isostatic pressing with two types of molding material consisting of pure fused CaZrO3 (Type A) or CaZrO3 with amounts of ZrO2 and CaO3 (Type D) for an in situ reaction [9]. A mandrel of steel was used to obtain the inner shape of the crucible. After decompressing and drying of the green ceramic crucibles they were fired at 1650°C for 6 h. Typical crucibles are shown in Figure 1 (left).

To produce crucibles for centrifugal casting a CaZrO3 slurry was used to prepare a functional coating on a commercial crucible of aluminum titanate (Porzellanfabrik Hermsdorf, Germany). The coating was fired at 1450°C to avoid cracks through different thermal expansion coefficients between the stucco and the coating of the crucible. Typical crucibles are shown in Figure 1 (right).

Shell molds

The shell molds were processed from standard wax trees according to the procedure described in [1]. The wax parts and the tree setup for centrifugal casting shown in Figure 2 and Figure 3, respectively. At wax trees for tilt casting the parts were mounted at two levels of four parts each (Figure 5).

Wax trees were dipped into a calcium zirconate slurry followed by the application of calcium zirconate stucco. Six layers were applied, three fine grained and 3 coarse grained. The dipping was practiced in 2 layers per day. Each layer was dried for at least 5 h before the following layer was applied. Careful drying of the final shells was performed under controlled atmosphere in a climatic chamber at 60% humidity, at 30°C and with an air movement of 1.3 m/s for seven days. After drying, the shells were fired at 1500°C for 4 h. Before casting the shells were preheated to casting temperature. A series of shell molds for centrifugal and tilt casting is shown in Figure 4.

For comparison a commercial silica-bonded shell system, which is commercially available from Ransom&Randolph, Dentsply, USA was used. The wax parts were coated with a front coat of yttria.

Casting trials

Before casting, the crucibles were preheated in a furnace at about 200°C in order to evaporate possible humidity absorbed in the crucible. This procedure was applied to avoid cracking of the crucibles in the casting machine due to water evaporation.

For casting trials a tilt casting machine (VTC200VTi, Indutherm, Germany) and a centrifugal casting machine (TCE10, Topcast, Italy) were used. The tilt-casting machine was equipped with two rotary vane pumps connected in series and achieved a pressure of about 8×10-3 mbar and an oxygen partial pressure of 10‑4 mbar immediately before casting. Such vacuum level was necessary in order to avoid reactions of the titanium melt with the gas atmosphere. The casting chamber was back-filled with argon to atmospheric pressure. A batch size of up to 300 g was used for casting. The series of casting trials was carried out with the crucibles type A and D.

The centrifugal casting machine had a maximum power of 10 kW. By the fact that this machine was not especially designed for casting titanium only a low vacuum of 40 mbar was achieved, which meant that a significantly higher oxygen partial pressure remained during casting. This caused a stronger reaction of the titanium melt due to residual oxygen in the casting atmosphere. Before casting, the casting chamber was refilled with argon to a pressure of 700 mbar. With the centrifugal machine laboratory-produced crucibles of Al2TiO5 with a CaZrO3 coating and commercial crucibles with modified yttria coating were tested. The maximum batch size was 100 g titanium.

During inductive heating, the metal temperature was monitored using a thermal imaging camera (Pyroview 640N, DIAS, Germany). The camera allowed an integral determination of the temperature on the surface of the melt and the subsequent evaluation of the melting process. To investigate the influence of pre-casting evacuation, overheating and dwell time on the reaction between the titanium melt and the crucibles, different parameters were applied. The pre-cast evacuation was only necessary with the tilt-casting machine to achieve good form filling. Depending on the pumping duration, a low vacuum was obtained.

Starting with a low heating power, the metal charge was heated close to melting temperature. The slow heating led to a homogeneous temperature of the rod and thus kept the time of liquid phase in crucible (exposition time) short. As determined in several casting trials, the reactivity of the titanium melt was much higher than in the solid state. When the liquidus temperature was reached, the power was increased to melt the whole material and to overheat it before casting. The dwell time means the time while all of the material was liquid. During the dwell time, the melt was heated until the desired temperature was reached. After the dwell time the casting was manually triggered. In case of the tilt-casting machine, the tilt speed was set up to 47°/s until the final angle of 90° was reached to achieve a fast filling and a low heat loss.

Microstructure, hardness and composition measurement

After casting metallographic samples were prepared to investigate the interaction of alloy and shell mold. This employed electron scanning microscopy (Zeiss, Gemini SEM 300) and optical microscopy (Zeiss, Imager Z2M).

The chemical composition was analyzed in the center of sample cross sections by glow discharge optical emission spectroscopy (GDOES) (Spectruma, GDA750) and by EDS. In addition, X-ray diffraction (XRD) was carried out to examine the phase composition of the crucibles before and after the casting process. To detect possible cracks and defects, the crucibles were investigated by X-ray computed tomography (XCT).

 

 

Results and discussion

After casting and quenching, the different shell systems showed significantly different surface appearance (Figure 5). The trees with the yttria modified R&R shell showed large residues of the shell material sticking on the surface. Due to their hardness, it was impossible to remove them by water jetting. Instead, sand blasting was required to remove the remains of the shell. The new, CaZrO3-based shell showed a golden colored metal surface with few shell residues on the surface. This is an indication of a very limited reaction of the melt with the new, CaZrO3-based shell material as examined in [10].

The investigation by SEM showed the different nature of reaction of the two shell systems (Figure 6 and Figure 7). At the bottom of the pictures, the typical so-called Widmannstätten structure of the titanium alloy is visible. It consists of two phases (a, dark, and b, bright). The a-phase and the b-phase have different crystal structure that are hexagonal close packed and body centered cubic, respectively [11].

Due to the reaction with the melt the refractory from the shell decomposes [12]. Oxygen is dissolved in the alloy, which stabilizes the a-phase. Therefore, a layer of a-phase is formed at the metal surface in contact to the shell, the so-called a-case. Such a-case was found for the modified R&R shell (Figure 6, left). The a-case forms a very hard and brittle surface layer, which can be removed only with great difficulty.

The residues of the shell were surrounded by metal, which explains the difficulty in the removal of shell residues. The yttria front layer that was used to limit shell reactions was not effective. Similar effects were examined with yttria-coated crucibles. The yttria layer was dissolved into the titanium melt. During cooling yttria re-precipitated at the grain boundaries (Figure 6, right). Such ceramic inclusions resulted in embrittlement.

The calcium zirconate shell also showed certain reaction with the titanium alloy (Figure 7). However, such reaction was much weaker compared to the modified R&R shell. The porous shell was not infiltrated by the melt. For this reason, it could be removed much more easily compared to the modified R&R shell. At the interface of metal and shell, the calcium zirconate started to be dissolved by the melt.

The reaction of calcium zirconate with the melt follows a certain reaction scheme [13]. Calcium zirconate decomposes into zirconia and calcia. Both refractories further decompose to their chemical elements. Zirconium and oxygen dissolve in the titanium melt. Calcium is not soluble in titanium and evaporates. As a result, the content of zirconium and oxygen are increased. The zirconium content in the surface layer of the titanium part appears brighter in the backscattered electron image (Figure 7, indicated by arrows). However, the dissolution of oxygen and zirconium did not result in the formation of a hard a-case.

The hardness and the oxygen content in cast 10mm rods were investigated by hardness and composition profiles (Figure 8). The interface of alloy and shell is defined by the position zero. Positive and negative distance values are in the metal and in the shell, respectively. Figure 8 shows results for different combinations of crucible and shell mold. Samples melted in a copper crucible (“Cu”) were prepared by electric arc melting. Oxygen content and sample hardness were clearly correlated: The higher the oxygen content, the higher was the hardness. The samples from the yttria modified R&R shell (green and black curve) exhibited higher surface hardness and oxygen level compared to those from the calcium zirconate shell (red and blue curve). For both shells the bulk hardness was reached at a depth above 300-400µm.

The melt temperature and duration play an important role for the bulk hardness of the alloy. In order to compare different combinations of melting temperature and duration a parameter was introduced, which is based on the Larson-Miller parameter (LMP) [14]. This parameter is originally used to compare diffusion controlled processes in high temperature deformation (creep). The LMP is calculated from the temperature and the logarithm of melting duration. Figure 9 shows a plot of the bulk chemical composition and the hardness over the LMP value.

It appears that oxygen and zirconium content as well as the hardness remain constant up to an LMP value of 47. The oxygen level was between the values of the feedstock and the limit given by the ASTM standard B367-09. The ASTM standard specifies no special value for the zirconium content, but a maximum concentration of 0.1 % for all other elements. Even this limit could be met with appropriate casting parameters. The hardness of the as-cast material was ca. 360 HV1, which was higher than the hardness of the feedstock (312 HV1). Such hardness increase was due to the different microstructure of as-cast material and feedstock.

At LMP values > 47 the concentrations of oxygen and zirconium increased strongly, as well as the hardness. Therefore, both temperature and melting duration have to be controlled carefully to avoid contamination of the melt. The melting range of grade 5 titanium is 1605-1660°C. A certain superheating of at least 50 K will be required to achieve sufficient form filling. The maximum LMP value of 47 can be converted into a maximum holding time of the melt in the crucible at a certain temperature. For instance the LMP = 47 equals to a holding time of 440s at 1700°C, 72s at 1750°C and only 13s at 1800°C. This indicates the high sensitivity of the reaction to uncontrolled overheating. Therefore, we have chosen to use a slow heating process that provides a homogeneous melting of the feedstock.


Besides jewelry items, the process and materials were also tested for industrial parts such as turbine wheels or small parts of glasses frames. Figure 10 shows a turbine wheel directly after casting without further surface treatment. The defect visible on the part on the left side was already present on the wax part. The feasibility of such cast parts in grade 5 titanium proves the suitability of the new shell mold for successful investment casting of titanium parts.

Summary and Outlook

A new shell mold and crucible material based on calcium zirconate was successfully tested for the investment casting of grade 5 titanium alloy (Ti-6Al-4V). In comparison to a commercial shell with yttria front coat, the new shell resulted in less oxygen contamination, less surface hardening and prevented the formation of an a-case. However, the control of the melt temperature was crucial to keep the oxygen level low. Excessive superheating and prolonged melting durations resulted in significant oxygen contamination and hardness increase. Ideally, the melt temperature should not exceed 1700°C to avoid contamination.

Further work will focus on the heat treatment of as-cast parts and the determination of mechanical properties. Different titanium alloys and other high melting and highly reactive alloys such as CoCr, Pt and Zr will be tested with the new calcium zirconate crucible and shell molds.

Acknowledgements

This IGF Project was supported via AiF No. 18293BG within the program for promoting the Industrial Collective Research (IGF) of the German Ministry of Economic Affairs and Energy (BMWi), based on a decision of the German Bundestag.

References

  1. Klotz, U.E., et al., Investment casting of titanium alloys with calcium zirconate moulds and crucibles. The International Journal of Advanced Manufacturing Technology, 2019. 103(1): p. 343-353.
  2. Nastac, L., et al., Advances in investment casting of Ti–6Al–4V alloy: a review. International Journal of Cast Metals Research, 2006. 19(2): p. 73-93.
  3. Klotz, U.E. and T. Heiss, Evaluation of crucible and investment materials for lost wax investment casting of Ti and NiTi alloys. International Journal of Cast Metals Research, 2014. 27(6): p. 341-348.
  4. Fashu, S., et al., A review on crucibles for induction melting of titanium alloys. Materials and Design, 2020. 186: p. 108295.
  5. Freitag, L., et al., Silica-free investment casting molds based on calcium zirconate. Ceramics International, 2017. 43(9): p. 6807-6814.
  6. Schafföner, S., et al., Advanced refractories for titanium metallurgy based on calcium zirconate with improved thermomechanical properties. Journal of the European Ceramic Society, 2019. 39(14): p. 4394-4403.
  7. Freitag, L., et al., Improved Precision Casting of Titanium Alloys Using Calcium Zirconate Moulds. refractories WORLDFORUM, 2019. 11(2): p. 76-82.
  8. Schafföner, S., et al., Fused calcium zirconate for refractory applications. Journal of the European Ceramic Society, 2013. 33(15-16): p. 3411-3418.
  9. Schafföner, S., et al., Influence of in situ phase formation on properties of calcium zirconate refractories. Journal of the European Ceramic Society, 2017. 37(1): p. 305-313.
  10. Bulling, F., Einfluss der Gießparameter auf die Eigenschaften von Feingussteilen aus Titanlegierungen, 2017, Hochschule Aalen: Schwäbisch Gmünd.
  11. Pederson, R., Microstructure and Phase transformation of Ti-6Al-4V, 2002, Luleå tekniska universitet.
  12. Frye, H., D.H. Sturgis, and M. Yasrebi, Basic Ceramic Considerations for the Lost Wax Processing of High Melting Alloys, in The Santa Fe Symposium, E. Bell, Editor 2000: ABQ, NM, USA.
  13. Bulling, F., et al. Investment casting of high reactive and high melting metals using calcium zirconate crucibles. in Proceedings of the liquid metal processing casting conference 2019. 2019. TMS.
  14. Larson, F. and M. J., Time-Temperature Relationship for Rupture and Creep Stresses. Transaction of the ASME, 1952. 74: p. 765-771.

 

Continue reading

Geometry driven parameters and relevance of open material system for jewelry additive manufacturing

Geometry driven parameters and relevance of open material system for jewelry additive manufacturing.

a speech by Marco Giuseppe Andreetta

Sisma, a growth journey of more than sixty years

More than 40 years in jewellery making machines, more than 60 years in micromechanics

More than 20 years in laser manufacturing and laser based process expertise

More than 10 years in manufacturing of metal 3D printing machines designed for small and complex geometries

Open systems and relevance for jewellery additive manufacturing

Open systems are a value for the jewellery manufacturer, enabling:

  • freedom of choice

→ potentially every powder manufacturer could be validated

  • possibility to adapt the building parameters to each geometry

→ different geometries have different requirements. In order to exploit all the benefits of additive manufacturing it is necessary to fine tune the building strategy

A harmonized approach to precious metal 3D printing

A harmonized approach to precious metal 3D printing:

to establish a SISTEMIC COMPENTENCE

– Density > 99,9%

– Digital microstructure

– Compliance with jewellery quality standards

– Building strategies adapted to the post processing


Compatibility with material manufacturers of precious metals

Having open parameters grants compatibility with multiple precious metal material supplier, leaving the customer free to evaluate existing suppliers or propose a new one for validation.

Currently available alloys for Jewelry additive manufacturing: 

Precious metals:

Au750 White Gold

Au750 Yellow Gold

Au750 Red Gold

Ag925

Non precious metals:

Bronze9010

Stainless Steel

Titanium alloys

Partnership with Application Specialists:

The application specialist works alongside with the final customer with the machine manufacturer support.

We chose to partner with one application experts for each strategic jewellery market, in order to accomodate requests from all over the world.





Advanced parameters:

Laser  (power, scanning speed)

Hatching (hatching distance, hatching strategies, order)

Contours (number, distance)

Beam spot (diameter, compensation) 

Layer thickness (multiple layer thickness)

Protective Gas (speed, gas mixture choice)

Powders (grain size, chemical composition)

Upskin & Downskin

Advanced parameters: before and after the building process

Geometry driven parameters

Small dimension part

  • Part description: thin wall section (0.7mm)
  • Validation criteria: surface quality, complex geometries compliance

 

  • Small beam spot diameter
  • Material choice with smaller than usual grain size
  • Easy to remove support, only supportive function

Massive part

  • Part description: wall thickness changes across the part
  • Validation criteria: mechanical properties, density and geometry compliance, build speed

 

  • Medium or variable beam spot
  • Supports: heat exchange, supporting and anchoring function
  • Benefits from pre-heating
  • Skin/core laser parameters to increase build speed

Beam spot diameter: small beam spot for special applications

“Pixel” technical sample – Bronze 90-10

▪ No correlation with conventional technologies

▪ The part is made of interconnected pieces

▪ The complete part is made in a single Ø100mm print job

▪ Combination off additive manufacturing, polishing and surface treatment (gold plating)

 

▪ Small beam spot parameter choice (30µm) to make the geometry possible

▪ Parameter fine tuning of the beam compensation (on the file preparation) rather than tweaking the CAD geometry

Titanium: a growing trend in jewellery

Titanium popularity is increasing in the jewellery market.

Once considered a minor metal relegated to aviation and medical industry, is now gaining importance for many reasons:

– weights a quarter of gold → bigger items are worn without discomfort

– anti-allergenic (e.g. in watchmaking Titanium can be used by whom is allergic to Nickel contained in 904L)

– can be processed to show a wide range of bold colours

 

Titanium: traditional technologies drawbacks

Titanium has its drawbacks for traditional machining:

Traditional processing of Titanium is costly.

Dedicated machinery is used to safely and effectively work with this alloy.

Machining Titanium usually requires:

– high torque machine and low speeds, to reduce the heat generation

– higher speeds usually generate unwanted hardening of the metal, increasing tool wear

Casting Titanium is a difficult task as well.

Titanium: advantages of 3D printing

Titanium can be 3D printed easily and safely on a well tuned machine.

Indeed, is one of the easiest material to be 3D printed:

– highly self supporting → a small amount of supports leads to increased geometry freedom and reduction of post processing

– relatively low elastic modulus → controlled distorsion during 3D printing

And, moreover, a wide range of alloys are already developed for other demanding markets.

Commonly Available Titanium alloys

Ti6Al4V – gr.23 ELI

Industry standard for aerospace and medical applications. More than 350 HV5

Ti gr.1, Ti gr.2

This two Titanium grades shares corrosion resistance, weldability, and high ductility. Almost pure Titanium, other elements are less than 0,2%. Roughly 225 HV5

Ti6Al4V – gr.5

Widely available on the market, it shares the chemical composition of gr.23 but with higher amount of Oxygen.

Serial production of hollow Titanium chain. Titanium itself helps stacking easily complex geometry with small amout of supports.

Source: A 3D-Printed Ultra-Low Young’s Modulus β-Ti Alloy for Biomedical Applications by Massimo Pellizzari, Alireza Jam, Matilde Tschon, Milena Fini, Carlo Lora and Matteo Benedetti https://www.mdpi.com/1996-1944/13/12/2792

New Titanium alloy being researched

Requirements:

Lower elastic modulus

Great fatigue resistance

Optimal corrosion resistance

Optimal biocompatibility (alloy without Vanadium)

New Titanium alloy being researched

Findings:

Lower elastic modulus was also useful to control the deformations during the printing process

–> the  new material  has even higher buildability characteristics if compared with conventional Ti6Al4V

It may be possible to completely avoid the heat treatment or at least switch to a lower temperature aging and stress relieving process

–> Possibility of using cheaper furnaces and avoid vacuum heat treatment for Titanium

New Titanium alloy being researched

Flexible Titanium applications in the luxury market



Current developments in Sisma :

  • Development of new alloys
  • Fine tuning of existing alloys for the LMF process
  • Fine tuning of the whole process (powders, LMF, heat treatment, inert gas mixture choice) to satisfy specific market requests.

Continue reading

The power of gold industry to generate positive social and environmental impact in mineral supply chain

The power of gold industry to generate positive social and environmental impact in mineral supply chain

a speech by Marco Marcin Piersiak

Abstarct

CSR. Sustainability. Responsible sourcing. Conflict free. These are key words that have become increasingly important in the gold industry in recent years.
Awareness on the issues in gold mining, such as the financing of conflict, human rights abuses, unsafe labor conditions, environmental destruction and negative social impacts, has increased. This requires the industry to take a closer look at its gold supply chains and promote solutions that provide access to conflict-free, legal or responsible gold in order to minimize the reputational risks for the sector.
Additionally, consumers are increasingly concerned about the origin of the products they buy and demand improved conditions throughout the supply chain of consumer goods. This is being reflected in the consumer spending on ethical, responsible or green products which have been increasing steadily. Market studies show that ethical consumerism is growing significantly, and ethical brand values drive purchase decisions.
Responsible gold sourcing therefore is not only a business opportunity and strategy for businesses worldwide, but a “must” for those companies who want to stay relevant for future generations.
Companies that provide their clients with responsible gold products can position and distinguish themselves from others and provide consumers with a more meaningful brand experience, while improving their corporate social responsibility and contributing to the Sustainable Development Goals.

Alliance for responsible mining: Who we are?

Non-Profit Organization established in 2004

Leading global expert on gold artisanal and small-scale mining (ASM)

Experience with 150 mines in 24 countries

GOLD AND PRECIOUS METALS MINING

What about recycled gold?

90% of the work force in mining

10% of global gold production

20 million people

A sector with challenges, but…

Mining generally has a poor reputation, and in particular artisanal mining is often associated with:

 Illegality and informality or the funding of armed conflicts

In Honduras, it is estimated that there are 2.500 informal artisanal miners, informal = don’t comply with all mining norms.(legal and economical barriers to the formalization)

– Artisanal miners often live in precarious conditions, there is poor health and safety of workers, and in the worst cases you can find child labor, accidents and deaths.

– Also, gender equality or discrimination may be common.

– ASM is one of the principal sources of mercury pollution and intoxication and you may have seen pictures of vast environmental destruction due to unorganized, illegal mining.

In Honduras : ASM mining communities use approx. 90 T of mercury / year. 

Why are all of these issues so prevalent in the ASM sector?

– Lack the enabling environment to improve their conditions: ASM often isn’t supported by the state but may be ignored, stigmatized or even persecuted

– Where mining legislation does exist its often not applicable or approriate to ASM, forcing these organizations to comply with regulations meant for large scale mining, only adding more barriers for inclusion.

– Often located in remote and unregulated áreas where the state isn’t present and regulation is taken over by locals or other groups

– They also lack access to necessary resources to perform mining in an organized, efficient manner:

– absence of  education and training to formalize.

– zero access to formal banking or finance to develop their activity

– Lack of access to efficient and environmentally friendly tools and technology 

Despite all these challenges this sector has incredible potential to contribute to local & national development. In Honduras, mining sector 100 and 150 USD Million of dollar every year. And the ASM  sector has a great role to play in this aspect an.  ASM  is a source of income for many families

Why engage with ASM?

Risks & Reputation

▪ Risks of not engaging.

▪ Excluding the sector doesn’t contribute to solving its problems but deteriorates the reputation of the sector as a whole.

Corporate Social Responsibility

▪ The biggest positive economic, social and environmental impact to be made in the gold industry is in ASM.

A holistic sourcing policy should be inclusive of gold from artisanal and small-scale mining.

Mining won’t stop

Phaedon Stamatopoulos (Director of Sourcing and Refining Argor-Heraeus)

The risks to source from ASM will be present regardless the existence of LBMA Standard v. 6, 8 or 10. If refiners do not engage with the ASM. The ASM material will take other routes and enter to international gold market. The more other routes take, the more value will be lost to LBMA members. So refiners have to engage and do it appropriately.


You choice matter!

Transforming lives through responsible artesanal and small-scale mining

But how? Buying from certified ASM

More than 370 companies from 33 countries work with Fairmined

1.6 tons and 6M USD of Fairmined Premium invested by miners

Continue reading

Ottimizzazione e riduzione del consumo d’acqua nei processi di trattamento superficiale

Ottimizzazione e riduzione del consumo d’acqua nei processi di trattamento superficiale

a speech by O. Balestrino

Introduzione

La presentazione si propone di evidenziare l’evoluzione dell’approccio ambientale nel corso degli anni da parte del legislatore e proporre alcune soluzioni tecniche per l’ottimizzazione e riduzione del consumo d’acqua nei processi di trattamento superficiale.

ECOTEAM spa
progetta, realizza, manutiene impianti di trattamento acque ed acque reflue.
Specializzata nel settore Trattamento e Finiture

Sviluppo della “Coscienza Ambientale” in Italia ed in Europa

  • Legge 319/1976 (Legge Merli)
  • D.lgs 152/2006
  • 2019: “Industria 4.0”
  • 2022: DNSH

La legge Merli indicava in maniera dettagliata le sostanze inquinanti, ponendo dei limiti al loro scarico nelle acque e alla loro concentrazione. Con riferimento agli scarichi, la ripartizione degli stessi ai fini della relativa disciplina e del conseguente trattamento sanzionatorio era fondata sulla loro provenienza; si disponeva inoltre che lo scarico effettuato in assenza della necessaria autorizzazione, concessa esclusivamente agli scarichi rispettosi dei limiti di accettabilità, fosse sempre soggetto a sanzione penale.

D.lgs 152 normativa di cui una sezione importante è dedicata appunto alla tutela delle acque dall’inquinamento e alla gestione delle risorse idriche.

Industria 4.0 / Ambiente

Impianti di trattamento acqua inseriti nel gruppo 2 allegato A dei materiali ammessi alla transizione 4.0, ovvero sistemi per l’assicurazione della qualità e della sostenibilità, con particolare riferimento alle due seguenti categorie:

  • componenti, sistemi e soluzioni intelligenti per la gestione, l’utilizzo efficiente e il monitoraggio dei consumi energetici e idrici e per la riduzione delle emissioni
  • filtri e sistemi di trattamento e recupero di acqua, aria, olio, sostanze chimiche, polveri con sistemi di segnalazione dell’efficienza filtrante e della presenza di anomalie o sostanze aliene al processo o pericolose, integrate con il sistema di fabbrica e in grado di avvisare gli operatori e/o di fermare le attività di macchine e impianti

Green Deal Europeo

Il pilastro centrale di Next Generation EU è il dispositivo Recovery and Resilience Facility che, tra i vari obiettivi, si propone di sostenere interventi che contribuiscano ad attuare l’Accordo di Parigi e gli obiettivi di sviluppo sostenibile delle Nazioni Unite, in coerenza con il Green Deal europeo.

Obiettivo «Inquinamento zero» per un ambiente privo di sostanze tossiche

Do No Significant Harm

ll principio Do No Significant Harm (DNSH) prevede che gli interventi previsti dai PNRR nazionali non arrechino nessun danno significativo all’ambiente: questo principio è fondamentale per accedere ai finanziamenti del RRF.

I piani devono includere interventi che concorrono per il 37% delle risorse alla transizione ecologica.

l principio DNSH si basa su quanto specificato nella “Tassonomia per la finanza sostenibile”, adottata per promuovere gli investimenti del settore privato in progetti verdi e sostenibili nonché contribuire a realizzare gli obiettivi del Green Deal.

Criteri del DNSH
Il Regolamento individua sei criteri per determinare come ogni attività economica contribuisca in modo sostanziale alla tutela dell’ecosistema, senza arrecare danno a nessuno degli obiettivi ambientali

1   Mitigazione dei cambiamenti climatici

    Un’attività economica non deve portare a significative emissioni di gas serra (GHG)

  Adattamento ai cambiamenti climatici

   Un’attività economica non deve determinare un maggiore

3   Uso sostenibile e protezione delle risorse idriche

   Un’attività economica non deve essere dannosa per il buono stato dei corpi idrici (superficiali, sotterranei o marini) e determinare il deterioramento qualitativo o la riduzione del potenziale ecologico

4   Transizione verso l’economia circolare, con riferimento anche a riduzione e riciclo dei rifiuti

   Un’attività economica non deve portare a significative inefficienze nell’utilizzo di materiali recuperati o riciclati, ad incrementi nell’uso diretto o indiretto di risorse naturali, all’incremento significativo di rifiuti, al loro incenerimento o smaltimento, causando danni ambientali significativi a lungo termine

  Protezione e riduzione dell’inquinamento dell’aria, dell’acqua o del suolo

   Un’attività economica non deve determinare un aumento delle emissioni di inquinanti nell’aria, nell’acqua o nel suolo

6   Protezione e ripristino della biodiversità e della salute degli eco-sistemi

   Un’attività economica non deve dannosa per le buone condizioni e resilienza degli ecosistemi o per lo stato di conservazione degli habitat e delle specie, comprese quelle di interesse per l’Unione

Nace

Uno specifico allegato tecnico della Tassonomia riporta i parametri per valutare se le diverse attività economiche contribuiscano in modo sostanziale alla mitigazione e all’adattamento ai cambiamenti climatici o causino danni significativi ad uno degli altri obiettivi.

Basandosi sul sistema europeo di classificazione delle attività economiche (NACE), vengono quindi individuate le attività che possono contribuire alla mitigazione dei cambiamenti climatici, identificando i settori che risultano cruciali per un’effettiva riduzione dell’inquinamento. Il quadro definito dalla Tassonomia fornisce quindi una guida affidabile affinché le decisioni di investimento siano sostenibili ed è diventato un elemento cardine nei criteri di assegnazione delle risorse europee

C24 – Manufacture of basic metals

   C24.4.1 – Precious metals production

C25 – Manufacture of fabricated metal products, except machinery and equipment

   C25.6.1 – Treatment and coating of metals

ECOTEAM

«Inquinamento zero» per un ambiente privo di sostanze tossiche

Uso sostenibile e protezione delle risorse idriche

   Un’attività economica non deve essere dannosa per il buono stato dei corpi idrici (superficiali, sotterranei o marini) e determinare il deterioramento qualitativo o la riduzione del potenziale ecologico

Protezione e riduzione dell’inquinamento dell’aria, dell’acqua o del suolo

   Un’attività economica non deve determinare un aumento delle emissioni di inquinanti nell’aria, nell’acqua o nel suolo

DNSH nel T.F.

Progettazione impianti a basso impatto

  • Utilizzo di prodotti a bassa tossicità
  • Progettazione di impianti efficienti
  • Riuso e recupero delle soluzioni
  • Scarico liquido zero

Lavaggio

Riduzione dell’acqua

La progettazione del sistema di lavaggio è legata a:

1. Processo

a) Caratteristiche della soluzione di processo

b) Numero di lavaggi

c) Tipologia di lavaggi

2. Produzione

I. Superficie

II. Obiettivo finale

Importanza dei lavaggi: Riduzione dell’acqua

Un lavaggio in cascata permette una forte riduzione della portata d’acqua necessaria ed in prima approssimazione possiamo dire che la concentrazione nei lavaggi 

 

DNSH e ZLD

Lo Scarico Liquido Zero può utilizzare diverse tecnologie e filosofie di progettazione ma il punto chiave è l’ultimo anello che è quasi sempre un sistema di evapo-concentrazione.

L’evapo-concentratore è un sistema che permette di concentrare delle soluzioni diluite eliminando/recuperando l’acqua.

Gli utilizzi principali sono:

1. Recupero di soluzioni diluite per essere riutilizzate come soluzioni di processo

2. Riduzione degli smaltimenti con recupero dell’acqua

 

EVAPO-CONCENTRATORI

Esistono diverse tecnologia di evapo-concentratori:

1.Pompa di calore

1. a serpentina immersa

2. a circolazione forzata

3. con raschiatore

2.Acqua calda

1. a singolo effetto

2. a doppio effetto

3. a triplo effetto

3.Ricompressione Meccanica dei Vapori

1. a circolazione naturale

2. a circolazione forzata

3. falling film

1. Con compressore a lobi

2. Con compressore centrifugo

CONCLUSIONI

La riduzione del consumo d’acqua, fino al punto estremo dello Scarico Liquido Zero, nei processi di trattamento superficiale persegue “l’obiettivo Inquinamento zero per un ambiente privo di sostanze tossiche”.

I costi di esercizio con le opportune tecniche possono essere molto vantaggiosi.

Continue reading

Optimization and reduction of water consumption in surface treatment processes

Optimization and reduction of water consumption in surface treatment processes

a speech by O. Balestrino

Preface

The presentation aims to highlight the evolution of the environmental approach over the years by the legislator and propose some technical solutions for the optimization and reduction of water consumption in surface treatment processes.

ECOTEAM spa
designs, builds, maintains water and wastewater treatment plants.Specialized in the Treatment and Finishing sector

Development of “Environmental Consciousness” in Italy and Europe

  • Legge 319/1976 (Legge Merli)
  • D.lgs 152/2006
  • 2019: “Industria 4.0”
  • 2022: DNSH

The Merli law indicated in detail the polluting substances, placing limits on their discharge into water and their concentration. With reference to discharges, the distribution of the same for the purposes of the relative regulations and the consequent sanctioning treatment was based on their origin; it was also established that unloading carried out in the absence of the necessary authorization, granted exclusively to unloading in compliance with the limits of acceptability, was always subject to a criminal sanction.

Legislative Decree 152 of which an important section is dedicated precisely to the protection of water from pollution and the management of water resources.

Industry 4.0 / Environment

Water treatment plants included in group 2 Annex A of the materials admitted to transition 4.0, or systems for quality and sustainability assurance, with particular reference to the following two categories :

  • components, systems and intelligent solutions for the management, efficient use and monitoring of energy and water consumption and for the reduction of emissions
  • filters and treatment and recovery systems for water, air, oil, chemicals, dust with signaling systems of filtering efficiency and the presence of anomalies or substances alien to the process or dangerous, integrated with the factory system and able to warn operators and / or to stop the activities of machines and plants

European Green Deal

The central pillar of Next Generation EU is the Recovery and Resilience Facility which, among other objectives, aims to support interventions that contribute to implementing the Paris Agreement and the United Nations Sustainable Development Goals, in line with the European Green Deal.

Objective “Zero pollution” for an environment free of toxic substances

Do No Significant Harm

The Do No Significant Harm principle (DNSH) states that the actions outlined in national NRRPs may not cause any significant harm to the environment: this is a fundamental principle for accessing funding from the RRF.

In addition, the plans must include actions which contribute 37% of the resources to the ecological transition.

The DNSH principle is based on the provisions of the “Taxonomy for Sustainable Finance” adopted to promote private sector investment in green and sustainable projects and help achieve the goals of the Green Deal.

Criteria of DNSH
The Regulation identifies six criteria for determining how each economic activity substantially contributes to protecting the ecosystem, without undermining any of the environmental goals

1   Climate change mitigation

 An economic activity must not lead to significant emissions of greenhouse gases (GHG)

  Climate change adaptation

 An economic activity must not have an increased negative impact on the current and future climate, on the activity itself or on people, nature or property

  Sistainable use and protection of water and marine resources

An economic activity must not be detrimental to the good health of water bodies (surface, groundwater or marine) or harm its quality or reduce its ecological potential

  Transition to the circular economy, including waste prevention and recycling

 An economic activity must not result in significant inefficiencies in the use of recovered or recycled materials, increase the direct or indirect use of natural resources, or significantly increase waste or the burning or disposal thereof, causing significant long-term environmental damage

5   Prevention and reduction of air, water and soil pollution

An economic activity must not cause increased emissions of pollutants in the air, water or soil

6   Protection and restoration of biodiversity and health of ecosystems

An economic activity must not harm the good condition and resilience of ecosystems or the conservation status of habitats and species, including those of interest to the Union.

Nace

A specific technical annex of the Taxonomy sets out the parameters for evaluating whether different economic activities substantially help with climate change mitigation and adaptation or whether they cause significant harm to one of the other goals. Based on the Statistical Classification of Economic Activities in the European Community (NACE), the activities that can help to mitigate climate change are then determined, identifying the sectors that are crucial for an effective reduction in pollution. The framework defined in the Taxonomy therefore provides a reliable guide for making sustainable investment decisions, and has become a core component of the criteria for allocating European resources

C24 – Manufacture of basic metals

   C24.4.1 – Precious metals production

C25 – Manufacture of fabricated metal products, except machinery and equipment

   C25.6.1 – Treatment and coating of metals

ECOTEAM

«Zero pollution» for an environment free of toxic substances

Sistainable use and protection of water and marine resources 

 An An economic activity must not be detrimental to the good health of water bodies (surface, groundwater or marine) or harm its quality or reduce its ecological potential

Prevention and reduction of air, water and soil pollution

An economic activity must not cause increased emissions of pollutants in the air, water or soil

DNSH in F.T.

Low impact plant design

  • Use of low toxicity products
  • Design of efficient systems
  • Reuse and recovery of solutions
  • Zero liquid discharge

RINSING

Water reduction

The design of the washing system is linked to:

1. Process

a) Characteristicsof the process solution

b) Numbers of rinsing

c) Type of rinsing

2. Production

I. Surface

II. Final goal

Importance of rinsing: Water reduction

A cascade rinsing allows a strong reduction of the necessary water flow and as a first approximation we can say that the concentration in the washes Xn

 

DNSH e ZLD

The Zero Liquid Discharge can use different technologies and design philosophies but the key point is the last link which is almost always an evaporation-concentration system.

The evaporator-concentrator is a system that allows you to concentrate diluted solutions by eliminating / recovering water.

The main uses are :

1. Recovery of diluted solutions to be reused as process solutions

2. Reduction of disposal with water recovery

 

EVAPO-CONCENTRATORS

There are different technologies of evapo-concentrators:

Heat pump

  with immersed coil

  forced circulation

  with scraper

Hot water

  single effect

  double effect

  triple effect

Mechanical Vapour Recompression

1. Natural circulation

2. forced circulation

3. falling film

a) With lobe compresso

 

CONCLUSIONI

The reduction of water consumption, up to the extreme point of Zero Liquid Discharge, in the surface treatment processes pursues “the goal of zero pollution for an environment free of toxic substances“

Operating costs with the appropriate techniques can be very advantageous.

Continue reading

SUSTAINABILITY: New Standards for Precious Metals

SUSTAINABILITY: New Standards for Precious Metals

a speech by Filippo Finocchi

Title: Our Common Future – Brundtland Report

Author: World Commission on Environment and Development

Year: 1987

For the first time, the report identifies Sustainability as:

The condition of a development capable of “ensuring the satisfaction of the needs of the present generation without compromising the possibility of future generations to realize their own”

 

Precious Metals

 

 

Supply and Demand: Gold

 

 

Supply and Demand: Silver

 

 

Supply and Demand: Platinum

 

 

Supply and Demand: Palladium

 

 

Supply and Demand: Rhodium

 

 

Supply Sources:

Mining

Refining

Grandfathered

Kinf of Mines

Open Pit Mine

Underground Mine

Artisanal Mine

 

Recycled Sources from Refining

Industrial Scraps

Jewelry Scraps

Disinvestments

Central Bank Sales

Electronic Scraps

 

Rules and Associations

 

 

Responsible Jewellery Council

 

 

Individual provisions of the COP

 

 

 

Overview of the RJC CoC Standard

 

 

 

Sustainability on Precious Metals

PROVENANCE CLAIM 

A documented claim made through the use of descriptions or symbols, relating to Precious Metals and specifically relate to their:

Origin – Geographical origin of materials, for example country, region, mine or corporate ownership of the Mining Facility/ies;

Source – Type of source, for example recycled, mined, artisanally mined, or date of production;

Practices – Specific practices applied in the supply chain relevant to the Code of Practices, including but not limited to, standards applicable to extraction, processing or manufacturing, conflict-free status, or due diligence towards sources.

Claims supported by evidence to avoid:

  • Greenwashing
  • Misleads consumers
  • Unfair to competitors who make legitimate efforts

 

All precious metals used by Legor Group S.p.A. are 100% RJC CoC compliant and 100% from recycled sources (Au, Ag, Pt, Pd, Rh)

Continue reading

Lo scenario globale dell’industria orafa durante il Covid-19

Lo scenario globale dell’industria orafa durante il Covid-19

una relazione di Sara Giusti

Abstract

Il settore della gioielleria è stato duramente colpito dalla pandemia di Covid19. La domanda mondiale è diminuita drasticamente nel 2020, colpita dalla chiusura dei negozi, dall’arresto dei flussi turistici, dalla diminuzione del potere d’acquisto tra i consumatori globali, dall’aumento dell’incertezza e dai prezzi dell’oro ai massimi livelli. Lo scenario per il 2021 resta molto incerto, a seconda dell’evoluzione della pandemia, con un rimbalzo della domanda che lascerà il mercato della gioielleria ancora ben al di sotto dei livelli del 2019.

Il settore orafo italiano nel 2021

La domanda mondiale di gioielli in oro ha continuato a crescere anche nel 3° trimestre 2021 (+33%) con un rallentamento atteso rispetto alla crescita nei primi due trimestri, che nel 2020 erano invece stati maggiormente colpiti dal calo legato alla crisi. Nei mesi estivi il settore orafo italiano ha confermato la buona dinamica già registrata a inizio anno e complessivamente nei primi nove mesi si è attestato già sopra i livelli pre-COVID sia in termini di fatturato (+13,1%), sia nelle esportazioni in valori (+6,9%) e quantità (+8,0%).

Materie prime: pesano la variante Omicron e le politiche monetarie

L’impatto negativo della variante Omicron e la minaccia di politiche monetarie più restrittive rappresentano ora i principali ostacoli per i mercati delle materie prime e potrebbero innescare più ampie correzioni dei prezzi nel breve termine. Tuttavia, un temporaneo indebolimento dei corsi delle materie prime favorirebbe l’economia mondiale, contribuendo ad accelerare i tassi di crescita, e semplificherebbe il compito delle principali banche centrali, che potrebbero continuare a sostenere la ripresa economica invece di combattere le pressioni inflazionistiche.

Metalli preziosi: preferiamo il palladio all’oro

Nel 2021, le quotazioni dei metalli preziosi hanno registrato una flessione. Manteniamo una view negativa su oro e argento, poiché l’adozione di politiche monetarie più restrittive dovrebbe ridurre la propensione a investire nei due metalli. Per contro, ci attendiamo un parziale recupero di platino e palladio, grazie alla probabile accelerazione della domanda dal settore automobilistico. Pertanto, nell’ambito di un’asset allocation strategica a medio termine, preferiamo il palladio all’oro.

Il settore orafo italiano nel 2021

Ha continuato anche nel 3° trimestre 2021 la ripresa della domanda mondiale di gioielli in oro (+33%), anche se in rallentamento rispetto ai primi due trimestri (+54% nel 1° trimestre e +62% nel 2° trimestre) e con un divario rispetto al periodo pre-crisi del -14%. Il settore orafo italiano ha confermato una buona dinamica che lo ha portato a superare i valori dei primi nove mesi del 2019 sia in termini di fatturato (+13,1%), sia nelle esportazioni in valori (+6,9%) e in quantità (+8,0%).

Nel 3° trimestre 2021 la domanda mondiale di gioielli in oro ha mostrato un rimbalzo significativo rispetto al 2020 (+33% in quantità), anche se in naturale rallentamento rispetto a quanto registrato nei primi due trimestri (+54% nel 1° trimestre e +62% nel 2° trimestre), che nel 2020 erano stati maggiormente segnati dalla crisi (Fig. 1); complessivamente nei primi nove mesi del 2021 la domanda mondiale ha segnato ancora un ritardo rispetto al 2019 del -14%. Grazie al forte rimbalzo dei primi tre mesi (+216%) è la Cina il mercato che ha presentato la crescita nel 2021 più marcata (+84%), seguita da India (+45%) e Medio Oriente (+43%), che sono tra i mercati con la crescita più elevata nel 3° trimestre insieme a Hong Kong (Fig. 2). Nel confronto con il periodo pre-crisi sono Cina e Stati Uniti i mercati più rilevanti che hanno già superato i livelli del 2019, rispettivamente del +4,1% e del 17,1%.

Figura 1 – Domanda mondiale di gioielli in oro (livelli in tonnellate e variazione % trimestrale)
Fonte: World Gold Council – Gold Demand Trend

Figura 2 – Domanda di gioielli in oro nei primi nove mesi 2021 (variazione % su dati in tonnellate)
Nota: (*) Al netto della Russia. I paesi sono esposti in ordine decrescente per valore della domanda nel 2021. Fonte: World Gold Council – Gold Demand Trend

Le esportazioni italiane di gioielli in oro hanno registrato, invece, nei primi nove mesi del 2021 una piena ripresa dei valori pre-COVID, sia in valori (+6,9%), sia in quantità (+8,0%), con un forte rimbalzo nel 2° trimestre (+251% in valori; +273% in quantità), confermato anche nel 3° trimestre con tassi di crescita pari a circa il 60% (Figg. 3-4).

Figura 3 – Evoluzione trimestrale delle esportazioni italiane di gioielli in oro* (var. %)
Nota: (*) Codice 711319. Fonte: elaborazioni Intesa Sanpaolo su dati Istat

Figura 4 – Andamento delle esportazioni italiane di gioielli in oro* rispetto al 2019 (var. %)
Nota: (*) Codice 711319. Fonte: elaborazioni Intesa Sanpaolo su dati Istat

Dal punto di vista dei principali mercati di sbocco, gli Stati Uniti hanno confermato il ruolo di primo mercato di riferimento delle esportazioni italiane di gioielli in oro grazie a valori pressoché raddoppiati rispetto ai primi nove mesi del 2020 (+98%) e al superamento dei dati pre-COVID sia in valori (+66,3%), sia in quantità (+44,5%). È continuato, inoltre, il significativo trend di crescita verso gli Emirati Arabi (+141,1% in valori; +151,0% in quantità), che hanno recuperato gli importi dei primi nove mesi del 2019 (+8,8%), mentre hanno segnato ancora un divario in termini di quantità (-12,8%). Un’attenzione particolare va agli scambi con l’Irlanda, effetto delle policy degli operatori stranieri già presenti nel 2020 che hanno confermato l’utilizzo del mercato irlandese come base fiscale e logistica per servire altri mercati, tra cui, con ogni probabilità, il Regno Unito (dove nel periodo gennaio-settembre si è registrato un crollo dei valori esportati dall’Italia, -35,8%). Le esportazioni verso la Svizzera, nonostante il significativo rimbalzo (+42,1% in valori, +48,9% in quantità), hanno mostrato un ritardo rispetto ai primi nove mesi del 2019 superiore al -35%, probabilmente anche in questo caso legato alle politiche distributive delle grandi maison del Lusso, per le quali la Svizzera rappresenta un polo logistico di riferimento. Particolarmente rilevante, inoltre, la crescita registrata dalle vendite verso il Sud Africa, che sono più che raddoppiate rispetto al 2020, quando erano comunque cresciute nonostante la crisi legata alla pandemia (Tab. 1).

Dal punto di vista territoriale, sono state confermate le evidenze già registrate nei primi due trimestri con un maggior dinamismo nelle province di Vicenza e Arezzo, che complessivamente hanno segnato un rimbalzo rispetto al 2020 del +70% per Vicenza e del +92% per Arezzo, mentre la crescita nel distretto di Valenza si è attestata al +27%. Queste dinamiche si sono tradotte in un pieno recupero rispetto al pre-crisi per i distretti di Vicenza e Arezzo, che hanno mostrato un incremento rispetto al 2019 del +17%, mentre per Valenza si sconta ancora un ritardo del -36%, probabilmente influenzato più che per gli altri due distretti dalle policy di prezzo delle multinazionali (il dato a livello territoriale è disponibile solo in valore e non in quantità) (Figg. 5-6).

Figura 5 – Evoluzione delle esportazioni di gioielleria e bigiotteria* (var. % con il corrispondente periodo dell’anno precedente a prezzi correnti)
Nota: (*) Codice ATECO 3.21. Fonte: elaborazioni Intesa Sanpaolo su dati Istat

Figura 6 – Evoluzione delle esportazioni di gioielleria e bigiotteria* a confronto con il periodo pre-COVID (var. % a prezzi correnti)
Nota: (*) Codice ATECO 3.21. Fonte: elaborazioni Intesa Sanpaolo su dati Istat

Nel periodo gennaio-settembre 2021 le esportazioni del distretto orafo di Vicenza sono state pari a 1,2 miliardi di euro con una crescita di oltre 480 milioni di euro rispetto al corrispondente periodo del 2020 (+69,9%) e in crescita anche rispetto al 2019 (+16,7%). Le esportazioni sono state sostenute soprattutto dai buoni risultati delle vendite verso gli Stati Uniti, che sono più che raddoppiate rispetto al 2020 (+113%) con un importante incremento anche rispetto al pre-crisi (+79,9%), oltre che da una significativa crescita verso il Sud Africa (+82,4% rispetto al 2020 e +74,6% verso il 2019); si è rafforzato inoltre il trend di crescita delle esportazioni verso la Malesia, già importante nel 2020 (+94,4%), che nei primi nove mesi del 2021 rappresenta il sesto mercato di riferimento rispetto al decimo nel 2020. Ritornano sopra i livelli del 2019 anche le esportazioni verso gli Emirati Arabi Uniti (+6,2%), mentre non recupera il divario l’export verso Hong Kong (-52,1%) (Tab. 2).

Anche il distretto di Arezzo ha recuperato il valore delle esportazioni del pre-COVID e con 1,8 miliardi di euro ha incrementato di circa 880 milioni di euro il valore rispetto ai primi nove mesi del 2020 (+92,4%) e di 270 milioni di euro il valore del 2019 (+17,3%). Trainante la crescita delle esportazioni verso gli Stati Uniti, che sono più che raddoppiate rispetto al 2020 (+129,5%) e nettamente superiori al 2019 (+87,8%), e verso il Sud Africa, che ha incrementato di oltre 80 milioni di euro il valore del 2019 ed è arrivato a rappresentare il 5,1% delle esportazioni distrettuali. Da segnalare, inoltre, il completo recupero anche delle esportazioni verso gli Emirati Arabi Uniti (+15,3%), che rappresentano il primo mercato di riferimento, oltre alla ripresa verso la Francia (+15,2%) e la Turchia (+30,9%), mentre hanno continuato a registrare un divario negativo rispetto al 2019 le esportazioni verso Hong Kong (-37,1%) (Tab. 3).

Il distretto orafo di Valenza Po invece ha mostrato ancora un divario rispetto al 2019 (-36,2%) e con un valore di oltre un miliardo di euro di esportazioni ha segnato una crescita di 222 milioni di euro rispetto al 2020 (+27,3%). Nell’analisi dei paesi di destinazione si può notare come il distretto risulti condizionato dalle scelte logistiche di alcuni importanti operatori, visibili dal forte incremento registrato dalle vendite verso l’Irlanda, che a partire dal 2020 è diventato il primo mercato di sbocco, mentre nel 2019 rappresentava poco più del 4% delle esportazioni. Penalizzate invece le esportazioni verso la Francia, in calo sia verso il 2020 (-34,7%) sia verso il 2019 (-73%), e verso la Svizzera (-23,4% verso il 2020 e -83,2% verso il 2019) (Tab. 4).

Gli indici di produzione e fatturato hanno confermato i segnali di recupero: nella media dei primi nove mesi del 2021 la produzione industriale e il fatturato del settore sono cresciuti circa del 65% rispetto al 2020, ma anche nel confronto con la media del 2019 hanno registrato un incremento del 13,1% per il fatturato e dell’8,5% nella produzione (Fig. 7). Anche le ultime evidenze del mese di ottobre confermano questa tendenza, con indici in crescita del 15% rispetto al 2019 sia per fatturato sia per produzione.

Le prospettive dell’economia mondiale sono attualmente molto incerte, condizionate dalla persistenza delle strozzature di offerta, ma le attese della crescita reale si confermano robuste anche nel 2022. Il settore italiano della gioielleria ha mostrato una buona capacità di risposta alla crisi, potendo contare su un buon presidio dei mercati internazionali, con un’attenzione crescente verso la digitalizzazione, le politiche di marchio e la sostenibilità, rafforzate dalla qualità e dalla bellezza dei gioielli Made in Italy.


Continue reading

The importance of grain size in jewelry alloys and its control

The importance of grain size in jewelry alloys and its control

a speech by Chris Corti

Abstract

Control of grain (crystal) size in jewellery manufacture is important for several reasons. It affects the properties of the alloys – mechanical, chemical and physical. These, in turn, influence the manufacturing process and the jewellery’s behaviour during wear by the customer.
There are a number of ways grain size (and shape) can be controlled in precious metal jewellery alloys – by casting, working and annealing and by use of alloying additives that refine the grain size during casting and during working and annealing. These are reviewed and discussed in terms of their mechanisms, ease of use and their effectiveness. Some of the problems that can arise from lack of control will also be discussed. The focus of the presentation will be on gold alloys but all precious metals are considered.

Introduction

Anyone involved in the making of jewellery should have an appreciation of the nature of the metals and alloys with which they work and understand how alloying and processing of the metals influences the microstructure and consequently their properties. For jewellery, we focus on the alloys of the precious metals – gold, silver, platinum and palladium, all four of which are inherently ductile metals – but what I say is of general validity and applies to most metals. 

Two fundamental points to understand are that1:

  • Alloy composition, microstructure and processing history are interrelated, Figure 1, and jointly influence an alloy’s properties, be they chemical (e.g. corrosion and tarnish resistance), physical (e.g. density, colour) or mechanical (e.g. strength, malleability, hardness). These, in turn, influence manufacturability and service performance.
  • Most metals and alloys are composed of many crystals, or grains as we metallurgists call them; thus, most alloys are polycrystalline. There are some rare exceptions such as single crystal aero turbine blades and amorphous or glassy metals. 

In this presentation, I want to focus on alloy macro- and micro-structures, particularly grain size and shape. How we can influence them by casting, alloying and by mechanical working and annealing? Why are they important?

Figure 1 – Interrelationship of alloy composition, microstructure and processing history on properties (schematic)

Importance of grain size to jewelry

As jewellers attending this Jewellery Technology Forum will know, metallurgists pay some attention to the crystal, or grain, size in their alloys. We talk about ‘large (or coarse) grains’ or small (or fine) grain sizes and generally state the desirability of the latter in terms of jewellery production. The terms ‘large’ and ‘small’ are, of course, relative. But for practical purposes, ‘Large’ will usually mean grains of the order of millimetres or larger and ‘small’ will refer to grain sizes of the order of tenths or hundredths of a millimetre (1 – 100 microns). You may also hear of grain sizes referred to in terms of an ASTM numerical value. This is a comparative method of measuring grain size. The higher the number, the smaller is the grain size.

Why is control of grain size (and shape) important? Well, it is down to the relation between the grains (crystals) and the grain boundaries – the region at the junction of adjacent grains – and their relative influence on mechanical deformation processes. Grain boundaries are where the atoms sitting on the crystal lattices of adjacent grains do not match across together, creating a narrow region of imperfect crystal, Figure 2. Often, these can be a preferred site for deleterious impurities and second phases, leading to embrittlement. At low or ambient temperatures, the deformation process under an imposed load is governed mainly by the dislocation slip mechanism within each grain (dislocations are linear crystal defects responsible for deformation on crystal slip planes). Without going into deep explanations, the outcome is that alloys with finer grains are stronger than those with large grains, and this effect is expressed by the Hall-Petch relationship in which yield strength, σy.s., is inversely related to the grain size squared:

σy.s. = m/d2 

where d is the average grain  diameter and m is a constant. The yield strength of a material (known also as the Elastic Limit or  proof stress) is the stress required to start plastic deformation and is smaller than the ultimate tensile strength (‘UTS’).

Thus, the jewellery is stronger and harder if it is fine-grained and, beneficially, it is also more ductile and less prone to cracking, impurity embrittlement and the ‘orange peel’ surface after deformation. As jewellery is generally only subject to relatively simple stresses (loads) at ambient temperatures, whether in a production environment or in service, a fine grain size is therefore desirable. This is generally true for other non-precious engineering components such as sheet steel for car bodies and white goods.

Figure 2 – Schematic of a grain boundary, showing the mismatch of crystal structure at the boundary

On the other hand, engineering components can be subjected to often-complex stresses over long periods at high temperatures; for example, turbine blades and disks in jet engines and boiler tubes in utility power stations.  At these high temperatures, the main deformation mechanisms are phenomena such as creep and fatigue. Creep is the slow deformation under a steady low stress or load and fatigue is the mechanical failure under an alternating load. The lead sealing on a tiled church roof is actually at a hot working temperature and so slowly creeps under its own weight.  Under such conditions, the grain boundaries are weaker and grains can slide over each other; hence, a large grain size is preferred as there is relatively less grain boundary area. In the ultimate, such as gas turbine blades, we prefer to eliminate grain boundaries, so we find use of directionally solidified alloys and even single crystal alloys for optimum creep and fatigue strength. An extreme of fine grain sizes is a phenomenon known as superplastic deformation, whereby alloys with stable, fine grain sizes can be gently deformed at temperature under low stresses to very large deformations, just like Swiss cheese fondue.  Several titanium aircraft components of complex shape are manufactured by this technique including the very large fan blades on Rolls Royce jet engines. Interestingly, fine-grained sterling silver can be superplastically deformed under the right conditions2 and I would expect some other precious metal alloys also to do likewise. But to date, that ability has not been developed or commercially exploited in our industry.

Examination of microstructure: metallography

As many of you will also know, we can examine the microstructure and measure the grain size of a piece of jewellery metal; due to the scale of this, it is often performed under an optical microscope. The process of examining grain size and general microstructure is called ‘metallography’. Figure 3 shows the microstructure of both as-cast and cold worked and recrystallized gold alloys. There are obvious differences in appearance and these will be explained later.

Figure 3 – Microstructure of typical karat gold alloys (a) as cast, (b) worked and annealed

Normally, if we wish to examine the macrostructure or microstructures of an alloy, we need a flat polished surface as optical microscopes have a limited depth of focus. In order to expose the features such as grain boundaries and second phases, we often need to etch the surface with a corrosive liquid such as acid. As grain boundaries are less perfect than the crystals, they etch preferentially to reveal themselves. As different crystals are oriented in different directions relative to the plane of the surface, they also etch at different rates and so appear of different contrast or colour to the eye. Where more than one phase is present, these also etch differently and usually show themselves as different colours or shades of darkness.

If we need greater magnification than we can get in an optical microscope to see the features of interest or we have an uneven surface such as a fracture, then we use a scanning electron microscope. Here flatness of the surface is not such an issue as in optical light microscopy and we can often see different phases by atomic number contrast, without the need for etching (see figure 22 in reference 3, for example)3,4. The heavier elements appear whiter under the SEM and the lighter ones darker, so giving rise to differences in contrast with varying alloy phase composition.

Casting

Melting and casting is a process for producing alloys of the desired composition and also for specific shapes. These can be either net shapes, as in investment (lost wax) casting, or stock materials, i.e. ingots, that can be further processed to modify the shape, structure and properties. Casting involves melting and the solidification of molten metal. Subsequent mechanical processing of ingot materials enables us to break down coarse, non-uniform structures to more desirable refined structures better suited to the purposes that we require in manufacture and in subsequent service and generally have improved, more consistent properties.

The structure of cast alloys depends on the rate at which we cool and solidify the metal which, in turn, depends on the size of the casting and the thermal conductivity of the mould material. Thus, the structure of large ingots will differ from that of small investment castings. We will explore the influence of casting conditions shortly.

Influence of solidification on grain size and shape

As has been mentioned before5,6, pure metals solidify at a fixed temperature; for example gold solidifies at 1064°C and silver at 962°C. Most alloys*, on the other hand, solidify over a temperature range: the liquidus temperature is the temperature above which the alloy is completely molten and is the temperature at which solidification starts on cooling; the solidus is the temperature at which solidification is completed and thus below this temperature the alloy is completely solid. Between the liquidus and solidus, alloys comprise some liquid and some solid, often known as the ‘mushy’ or pasty state. The characteristics of solidification and the resulting structure are influenced by the temperature gap between the liquidus and solidus and the overall phase diagram for the alloy system.

[*There are a few exceptions, such as eutectic alloys which also solidify at a fixed temperature like the pure metals]

To understand the process of solidification, it helps to understand the atomic structure of liquids and how atoms coalesce to form solid material. The liquid state comprises mobile atoms in a dynamic, unstructured state. Some atoms will come together briefly to form a small cluster but these quickly break up.

As we cool a liquid (molten metal in our case), small clusters of atoms come together and stay together to form a nucleus. The formation of nuclei tends to occur at preferred sites such as a mould wall or at impurity particles/inclusions but can occur   randomly in the melt.  As the temperature falls, more atoms join the small stable clusters of atoms that comprise the nuclei in a structured way that is the crystal lattice of that metal or alloy. For our precious metals, that will be in the face-centred cubic arrangement discussed in another presentation1. These are the embryonic crystals  (crystallites) that will make up our alloy. A fast cooling rate during solidification will lead to more nuclei forming and consequently, because each nuclei develops into a crystal or grain, a fine grain size results. A slow cooling rate leads to less nuclei forming and a resultant larger grain size. We should note that nucleation at inclusion particles is how insoluble grain refiners like iridium and ruthenium work in gold alloys, for example, by promoting nucleation.

These nuclei grow by adding more atoms from the liquid. They do so in preferred crystal directions, extending from the cube faces and branching out as the crystal grows. This results in a tree-like structure that we call a dendrite. All the nuclei grow into dendrites, each of which will have an orientation dependent on the orientation of the original nucleus. Each dendrite continues to grow until it collides with an adjacent dendrite. The interface between them forms a boundary. This we call the crystal boundary, or more usually, a grain boundary. Here, the atoms on each lattice do not fit together cleanly, so creating a thin region of imperfect crystal, as we have discussed earlier. Figure 4 shows some dendrites in a platinum alloy7. We can clearly see several dendrites, each pointing in different directions. We often see such dendrites in shrinkage cavities in investment casting. Provided there is feeding of more liquid metal, the spaces between dendrites eventually fill up to give solid metal. If there is restricted feed, then shrinkage cavities (porosity) will result.

Figure 4 – SEM image of dendrites in Pt-Ru alloy, seen in a shrinkage cavity  (from reference 7)

If we examine an etched metallographic section of a cast metal under the microscope, such as shown in Figure 3, we can clearly see the dendritic structure. We also note that the dendrite centre etches up differently to the outer zone; this is due to chemical segregation, whereby the metal that solidifies first has a different chemical composition from that which solidifies last. This is known as ‘coring’. Why that is so, we can readily explain from the phase diagram6.

When we pour molten metal into a mould, it begins to solidify inwards from the mould walls as this is the coldest temperature. If a cold metal (e.g. iron) mould is used, as is usual for ingot casting, the rate of heat removal is rapid. Initially, a thin layer of fine grains is formed – the chill layer –  because of the high rate of nucleation. Then long finger-like grains – called columnar grains – begin to grow inwards from the chill layer towards the centre of the ingot, Figure 5.

Figure 5 – Solidification proceeds inwards from the colder mould walls

Figure 6 – Grain structure of ingots cast into metal moulds at a relatively high pouring temperature

If the metal casting temperature is relatively high, this columnar growth will extend into the centre of the ingot, Figure 6. This is not a good structure if you are going to roll the ingot to plate or sheet, as it may split down the middle (known as alligatoring, Figure 7), as this is also where impurities will tend to concentrate as it is the last metal to solidify.

Figure 7 – Splitting of gold alloy ingot down the centre during rolling (‘alligatoring’)

Figure 8 – Grain structure of ingots cast into metal moulds at a relatively low pouring temperature

When a ceramic (plaster) muold is used, as in investment (lost wax) casting, the cooling rate is markedly slower and equiaxed grains are formed throughout the casting. This is a preferred microstructure. Temperature of melt and mould can play a role in determining the as-cast grain size. The higher the temperature, the coarser the grain size.

Refining cast microstructures by working to improve grain size

As we have seen, cast microstructures may not be optimum for manufacturing or service. Chemical segregation (‘coring’) and coarse structures can lead to poor mechanical and corrosion properties. So working of ingot material serves two purposes: (a) to change the physical shape to that desired (sheet, wire, etc) and (b) to refine the structure. This may involve breaking down coarse grain structures, reducing segregation and refining coarse second phases to smaller, more uniformly distributed ones.

Much of this is best achieved by hot working the material, by hot forging or rolling, extrusion and/or drawing or combinations of methods. This will refine the structure but leave it more or less in a soft annealed condition. In hot working, as the metal deforms, it is at a high enough temperature for it to recrystallize (anneal) during the deformation.

If we wish to impart additional hardness and improved strength as well as a more accurate shape and superior surface, then we cold work the material, usually at ambient temperature. Here the temperature is insufficient to promote annealing.

If we overwork a material, it can crack or fracture, so we need to anneal the hard worked material from time to time to restore the soft, ductile condition and enable further working. Annealing involves a process of recrystallization, where the hard deformed grains reform themselves into new undeformed grains by a nucleation and growth process analogous to solidification.

Cold working and annealing: influence on microstructure & grain size

Cold working of metals results in an overall shape change. This is reflected by a change in the microstructure, where the grains must deform to accommodate the change in shape. This is shown schematically in Figure 9 for reduction by rolling. To achieve this, planes of atoms in each grain (crystal) must slide over each other, Figure 10, via crystal defects called dislocations. Such sliding occurs over several crystal planes in a complex way.

Figure 9 – The effect of cold working on the microstructure of single phase alloys

Figure 10 – Simplified sketch of slip in a crystal lattice

We also see this deformation in the overall macrostructure: Figure 11 shows one-half of the cross-section of a washer in the process of being upset into a wedding band; the heterogeneity of deformation is evident in its fibrous appearance. Most cold-working processes result in uneven deformation through the cross-section. In rolling or extrusion, for example, most deformation occurs at the surface, especially if only small reductions per pass are imposed. Uneven deformation can give rise to initiation of cracking from the surface, as Battaini has explained8. Such non-uniform deformation can also have repercussions on the grain structure on subsequent annealing when the process of recrystallization takes place. Recrystallization results in new undeformed grains replacing the old deformed grains.  The fibrous cold-worked structure is replaced by recrystallized new grains, as can be seen in Figure 12.

Figure 11 – Macrostructure of cross-section of a nickel white gold washer after partial upsetting  towards making a wedding band (from reference 8)

Figure 12 – Recrystallized grains breaking up the fibrous cold-worked structure of washer in Figure 11 (from reference 8)

The resulting grain size after annealing depends on the amount of cold work, the annealing temperature and time. The more cold work, the finer is the recrystallised grain size. Annealing of material only cold-worked a small amount can result in large grains, which is undesirable (there is a critical minimum amount of cold-work necessary to initiate recrystallization, typically about 12-15% reduction). That is why annealing is often recommended only after substantial cold work, e.g. 60% reduction in thickness. The annealing temperature and time also play a part. Figure 13 shows a matrix of temperature and time of annealing for a 2N pale yellow 18 carat gold (cold-worked 70% reduction by rolling) and their effect on resulting annealed grain size (9). The variation in annealed grain size due to uneven amounts of deformation can be seen in Figure 14 which shows part of a cross-section of a ‘C’ shaped wire in an annealed 18 carat nickel white gold. The inside of the flange has a finer grain size and the outer regions have a coarser size, reflecting the uneven amount of deformation during rolling8. This may not be important in some instances, but it can be in others. Orange peel surfaces and cracking may result on further working, for example, where large grains are at the surface regions, as discussed earlier.

Figure 13 – Effect of temperature (horizontal axis) and time (vertical axis) on recrystallized grain size of a 2N 18 carat yellow gold (from reference 9)

Figure 15 shows schematically the effect of annealing temperature on hardness/strength , ductility and recrystallised grain size. An important point to note is that if the annealing temperature is too high, then grain growth can occur and very large grains can result. This is undesirable and can lead to the ‘orange peel’ rumpled surface and cracking on further working, as noted earlier. This can be a problem for craftsmen during gas torch annealing as there is less control of temperature during annealing and a tendency to overheat the piece.  14 carat coloured golds are especially prone to excessive grain growth during annealing, as Grimwade has noted10.

Figure 14 – Grain size variation in annealed cross-section of ‘C’ shaped cold rolled wire in 18 karat nickel white gold (from reference 8)

Figure 15 – Schematic: Annealing behaviour of cold-worked alloys as a function of annealing temperature. Note region of grain growth at high annealing temperatures

Two-phase alloys: Where an alloy consists of two (or more) phases, there is an effect on grain size after working and annealing. Working the alloy leads to a higher level of dislocations (crystal defects) in the matrix phase due to the presence of a hard second phase and this leads, in turn to a finer grain size after recrystallisation during annealing. Sterling silver is an example of a two-phase alloy. 

Where the second phase is very fine, i.e. very small in diameter, and evenly distributed within the matrix phase, such as in age hardened alloys or micro-alloys, the second phase may inhibit recrystallisation  as the fine particles of second phase can pin grain boundaries and so higher annealing temperatures may be necessary. In such alloys, a larger or more uneven grain size may result.

Alloying additions to refine grain size: grain refiners

Very small additions of grain refiners, typically at levels of about 0.1% or less, are often added to carat golds as fine powders to promote a fine grain size in the alloy. They include iridium, ruthenium and cobalt. Iridium and ruthenium are effective in casting, where they promote nucleation of crystals during solidification, and cobalt is effective during annealing of cold worked materials, where it promotes nucleation of grains during recrystallization. Iridium and ruthenium are insoluble in molten carat golds, so act as nucleation sites. Figure 16 shows the fine grain structure of an annealed 18 carat gold with iridium additions, compared to that without iridium. If too much is added or it is not well dispersed, one can get nests of hard particles at the surface that give rise to ‘comet tailing’ defects on polishing11. Note that grain refiners are not effective in silicon-containing carat gold alloys.

Figure 16 – Grain refining effect by iridium additions to an 18 ct gold. Left: with Ir, Right: without Ir (from reference 12)

The amount of cobalt that can be added is also sensitive to copper content of the alloy, as Ott has shown12. Its effect in grain refining a 14K gold is shown in Figure 17.

Other metals have also been shown to act as a grain refiner in gold alloys, such as boron, beryllium, yttrium and the rare earth metals, rhenium, rhodium, nickel, barium and zirconium13-16. In a more recent patent, a combination of iridium, rhodium and ruthenium added as a copper-master alloy is claimed to be effective17.

Figure 17 – Grain refining by cobalt in a 14ct gold. Left: with Co, Right: without Co (from reference 12)

Conclusion

In this presentation, it is concluded that, for jewellery manufacture, it is desirable to have a fine (small) grain size. It optimises strength and ductility and other properties such as corrosion resistance. Coarse grain sizes lead to ‘orange peel’ surfaces on subsequent deformation and enhance the tendency to crack as well as reducing strength, hardness and ductility. The yield strength is inversely proportional to the square of the grain size.

The influence of casting conditions on as-cast grain size and shape has been discussed in terms of nucleation of crystallites in the melt and solidification patterns. Melt temperature and mould material play an important role.

The influence of cold working on the as-cast macrostructure and the recrystallisation process during annealing has also been examined in terms of the resulting recrystallised grain size. Annealing temperature is an important factor to obtain a fine grain size. Too high a temperature can result in excessive grain growth, which is undesirable.

The use of grain refiners, such as iridium and cobalt  in carat golds, to obtain a finer grain size has also been demonstrated. The mechanism is enhanced nucleation of crystallites during solidification or  recrystallisation.

Acknowledgements

I would like to thank the organisers of the Jewellery Technology forum for inviting me to present once again and for their kind hospitality. I also thank many friends in the industry for allowing use of their figures and data. Many are courtesy of Mark Grimwade.

References

  1. Christopher W. Corti, “Basic Metallurgy of the Precious Metals – Part 1”, in The Santa Fe Symposium on Jewelry Manufacturing Technology 2017, ed Eddie Bell et al (Albuquerque: Met-Chem Research, 2017: 25-61. Also 2007: 77-108
  2. R.W.E. Rushforth, unpublished work, Johnson Matthey plc, 1978
  3. Stewart Grice, “Know your defects: The Benefits of understanding Jewelry Manufacturing Problems”, in The Santa Fe Symposium on Jewelry Manufacturing Technology 2007, ed Eddie Bell (Albuquerque: Met-Chem Research, 2007: 173-212
  4. Greg Normandeau, “Applications of the Scanning Electron Microscope for Jewelry Manufacturing”, in The Santa Fe Symposium on Jewelry Manufacturing Technology 2004, ed Eddie Bell (Albuquerque: Met-Chem Research, 2004: 345-388
  5. Mark Grimwade, “The Nature of Metals and Alloys” in The Santa Fe Symposium on Jewelry Manufacturing Technology 2001, ed Eddie Bell (Albuquerque: Met-Chem Research, 2001), 151-179.
  6. Mark Grimwade, “A Plaim Man’s Guide to Alloy Phase Diagrams: Their Use in Jewellery Manufacture – Part 1”, Gold Technology no 29, Summer 2000, 2-15. The author (Corti) can supply a pdf file of this on request
  7. John McCloskey, “Microsegregation in Pt-Co and Pt-Ru Jewelry alloys”, in The Santa Fe Symposium on Jewelry Manufacturing Technology 2006, ed Eddie Bell (Albuquerque: Met-Chem Research, 2006: 363-376
  8. Paulo Battaini, “Metallography in Jewlry Fabrication: How to avoid problems and improve Quality”, in The Santa Fe Symposium on Jewelry Manufacturing Technology 2007, ed Eddie Bell (Albuquerque: Met-Chem Research, 2007: 31-66
  9. Christian P.Susz, “Recrystallization in 18 carat gold alloys”, Aurum no 2, 1980, 11-14 The author (Corti) can supply a pdf file of this on request
  10. Mark Grimwade, Introduction to Precious Metals, Brynmorgan press, Maine, USA, 2009; ISBN978-1-929565-30-6
  11. Valerio Faccenda and Michele Condó, “Is ‘Pure’ Gold really Pure?”, in The Santa Fe Symposium on Jewelry Manufacturing Technology 2004, ed Eddie Bell (Albuquerque: Met-Chem Research, 2004), 135-150
  12. Dieter Ott, “Influence of Small Additions and Impurities on Gold and Jewelry Gold alloys”, in The Santa Fe Symposium on Jewelry Manufacturing Technology 1997, ed Dave Schneller (Albuquerque: Met-Chem Research, 1997), 173-196; Also: ibid, Gold Technology, No 22, 1997, p31-38 and “Optimising Gold Alloys for the Manufacturing Process”, Gold Technology, No 34, 2002, 37-44
  13. W S Rapson & T Groenewald, Gold Usage, Academic Press, London, 1978. ISBN 0-12-581250-7
  14. W Truthe, US Patent 2,143,217, January 1939 (assigned to Degussa)
  15. P Johns, UK Patent 2434376A, July 2007
  16. C Raub & D Ott, German patent DE2803949A1, August 1979
  17. M Poliero & A Basso, US Patent 2015/03544029A1, December 2015

Continue reading

Importanza del grano cristallino e del suo controllo nella gioielleria

Importanza del grano cristallino e del suo controllo nella gioielleria

una relazione di Chris Corti

Abstract

Il controllo delle dimensioni dei grani cristallini (o cristalliti) nella produzione gioielliera è importante per diversi motivi. Da esso dipendono le proprietà meccaniche, chimiche e fisiche delle leghe, che a loro volta influenzano il processo di produzione e le prestazioni d’uso del gioiello quando sarà indossato dal cliente.
Esistono vari modi per controllare le dimensioni (e la forma) dei grani nelle leghe di metalli preziosi: attraverso la fusione, i processi di lavorazione e la ricottura, nonché con l’uso di additivi alliganti che affinano le dimensioni dei grani durante i trattamenti e la ricottura. Questo documento illustra ed esamina i metodi disponibili, descrivendone i principi, l’usabilità e l’efficacia. Verranno descritti anche alcuni dei problemi dovuti al mancato controllo dimensionale dei grani. La presentazione si concentrerà in particolar modo sulle leghe d’oro, ma senza trascurare gli altri metalli preziosi.

Introduzione

Chiunque abbia a che fare con la realizzazione di gioielli deve conoscere la natura dei metalli e delle leghe impiegati nel settore, e capire come l’alligazione e le lavorazioni dei metalli influiscano sulla microstruttura e, di conseguenza, sulle proprietà di questi materiali. Per il comparto gioielleria, tratteremo in particolare le leghe di metalli preziosi (oro, argento, platino e palladio, tutti metalli estremamente duttili), ma ciò che dirò vale in generale per la maggior parte dei metalli.

Due principali concetti da tenere a mente sono1:

  • La composizione, la microstruttura e i procedimenti di lavorazione delle leghe sono interdipendenti (Figura 1) e, insieme, determinano le proprietà di una lega, siano esse chimiche (per esempio la corrosione e la resistenza all’annerimento), fisiche (densità e colore) o meccaniche (resistenza, malleabilità, durezza). Queste, a loro volta, influenzano la producibilità e le prestazioni d’uso.
  • La maggior parte di metalli e leghe è composta da cristalliti, o grani cristallini, come li chiamiamo noi metallurgisti; pertanto, quasi tutte le leghe sono policristalline. Esistono rare eccezioni di monocristalli, come le leghe impiegate nella fabbricazione di turbine per motori d’aereo, oppure i metalli amorfi (detti anche vetrosi). 

In questa presentazione, voglio concentrarmi sulle macro- e microstrutture delle leghe, in particolare sulle dimensioni e la forma dei grani. Come possiamo modificarle nei processi di fusione e alligazione, nelle lavorazioni meccaniche e nella ricottura? Perché sono importanti?

Figura 1 – Rappresentazione schematica dell’interrelazione fra composizione, microstruttura e procedimenti di lavorazione delle leghe, che ne determina le proprietà

Importanza delle dimensioni dei grani cristallini in gioielleria

Come ben sanno i gioiellieri presenti a questo Jewellery Technology Forum, i metallurgisti sono attenti alle dimensioni dei cristalliti, o grani cristallini, nelle loro leghe. Parliamo di “grani grossi” e “grani fini” e, in generale, diciamo di privilegiare questi ultimi per la produzione dei gioielli. I termini “grossi” e “fini” sono naturalmente relativi. Ai fini pratici, diciamo che “grosso” identifica i grani con dimensioni nell’ordine dei millimetri e “fine” i grani con dimensioni nell’ordine di decimi o centesimi di millimetro (1-100 micron). Le dimensioni dei grani possono essere misurate anche con valori numerici ASTM. Si tratta di un metodo comparativo per misurare le dimensioni dei grani. Più alto è il numero, più piccole sono le dimensioni dei grani.

Perché il controllo delle dimensioni dei grani (e della loro forma) è così importante? La risposta sta nella relazione tra i grani cristallini (cristalliti) e il “bordo di grano” – ovvero la linea di confine tra due grani adiacenti – e l’impatto che questi elementi hanno sui processi di deformazione meccanica. I bordi di grano sono le interfacce dove gli atomi del reticolo cristallino, appartenenti a grani adiacenti, non combaciano in modo omogeneo e creano una sorta di “imperfezione cristallina”, come illustrato nella Figura 2. Queste regioni, oltre ad accumulare impurità, sono più soggette a infragilimento. A temperatura ambiente o a temperature inferiori, il processo di deformazione del materiale sottoposto a un carico è governato essenzialmente dal meccanismo di propagazione delle dislocazioni (le dislocazioni sono difetti lineari della struttura cristallina, responsabili della deformazione lungo i piani di scorrimento). Senza entrare troppo nei dettagli, il risultato è che le leghe con grani più fini sono più resistenti di quelle a grani grossi; e questa caratteristica è espressa dalla legge di Hall-Petch, secondo cui la resistenza allo snervamento σs è inversamente proporzionale alla radice quadrata delle dimensioni del grano:

σs = m/d2

dove d è la dimensione media dei grani e m è una costante. La resistenza allo snervamento di un materiale (detta anche limite elastico o carico di snervamento, in inglese proof stress) è la sollecitazione richiesta per avviare una deformazione plastica ed è inferiore al carico di rottura UTS (Ultimate Tensile Strength).

I gioielli, quindi, sono più duri e resistenti se hanno un grano fine e, al tempo stesso, sono anche più duttili e meno soggetti a incrinature, infragilimento causato da impurità e spellamento superficiale dopo una deformazione. Poiché di norma i gioielli sono esposti a tensioni (carichi) relativamente semplici a temperature ambiente, sia in fase di produzione che durante l’uso, è preferibile scegliere materiali a grano fine. Questa regola di massima vale anche per i componenti ingegneristici non preziosi, come le lamiere metalliche per le carrozzerie delle auto e gli elettrodomestici.

Figura 2 – Rappresentazione schematica di un bordo di grano, dove è evidente l’irregolarità della struttura cristallina lungo la linea di interfaccia

Esistono però dei casi in cui i componenti ingegneristici sono soggetti a tensioni anche molto complesse, per lunghi periodi di tempo e ad alte temperature; per esempio le turbine e i dischi nei motori aeronautici e i tubi delle caldaie nelle centrali elettriche. A temperature così elevate, i principali fenomeni di deformazione sono lo scorrimento viscoso (creep) e la fatica. Lo scorrimento viscoso è la lenta deformazione di un materiale sottoposto a uno sforzo di entità non elevata ma costante; la fatica è la progressiva degradazione e rottura di un materiale sottoposto a carichi variabili nel tempo. Le sigillature in piombo nel tetto in tegole di una chiesa sono un esempio di metallo esposto ad alte temperature, che progressivamente si deforma sotto il suo peso. In queste condizioni, i bordi di grano si indeboliscono e possono scorrere l’uno sull’altro; ecco perché in questi casi è meglio avere dei grani più grossi, in modo da ridurre l’area dei bordi. Nelle applicazioni più gravose, come le palette rotanti delle turbine a gas, si preferisce eliminare del tutto i bordi di grano, utilizzando invece leghe solidificate direzionalmente e leghe monocristalline con un’ottima resistenza alla fatica e allo scorrimento viscoso. Una peculiarità di alcune leghe con grani molto fini e stabili è la cosiddetta “superplasticità”, ossia la capacità di deformarsi in modo molto esteso e progressivo, in particolari condizioni di temperatura, se sottoposte a tensioni di bassa entità – un po’ come la fonduta di formaggio svizzera! Diversi componenti in titanio per l’aeronautica, con forme complesse, vengono prodotti con questa tecnica, come per esempio le grandi palette dei motori Rolls Royce per gli aerei. È interessante notare come l’argento sterling a grano fine, in particolari condizioni2, possa subire una deformazione superplastica. Suppongo quindi che anche altre leghe di metalli preziosi abbiano la stessa capacità; ma finora questo aspetto non è stato sviluppato né sfruttato commercialmente nel nostro settore.

Esame della microstruttura: metallografia

Come molti di voi sapranno, siamo in grado di esaminare la microstruttura e misurare le dimensioni dei grani dei metalli utilizzati in gioielleria. Questo normalmente viene fatto con un microscopio ottico. L’esame delle dimensioni dei grani e della microstruttura dei materiali metallici è materia di studio della “metallografia”. La Figura 3 mostra la microstruttura di una lega d’oro in condizioni “as cast” e dopo lavorazione a freddo e ricristallizzazione. L’aspetto dei due campioni è molto diverso; spiegheremo più avanti perché.

Figura 3 – Microstruttura di una lega d’oro (a) in condizioni “as cast” e (b) dopo lavorazione e ricottura

Normalmente, se vogliamo esaminare la macrostruttura o le microstrutture di una lega, dobbiamo prendere una superficie piana e levigata, dato che i microscopi ottici hanno una profondità di fuoco limitata. Per osservare elementi come i bordi di grano e le seconde fasi, spesso è necessario erodere la superficie con un liquido corrosivo, tipo un acido. Poiché i bordi di grano sono meno perfetti dei cristalli, intaccando la superficie si rivelano facilmente. Dato che i cristalli sono orientati in diverse direzioni rispetto al piano della superficie, anche loro vengono erosi in progressione successiva e quindi, rivelandosi, creano dei contrasti o appaiono di colore diverso all’occhio umano. Se è presente più di una fase, anche queste fasi si rivelano in modo diverso con l’erosione e di solito appaiono di colori diversi oppure alcune sono più scure di altre.

Se occorre un maggiore ingrandimento rispetto a ciò che possiamo ottenere con un microscopio ottico, oppure se vogliamo osservare una superficie irregolare come per esempio una frattura, utilizziamo un microscopio elettronico a scansione (SEM). In questo caso poco importa se la superficie non è liscia e piatta come nella microscopia ottica; anzi, possiamo osservare le diverse fasi attraverso un contrasto che rappresenta le differenze nel numero atomico, senza bisogno di intaccare la superficie con un acido (vedi per esempio la Figura 22 nel riferimento bibliografico 3)3,4. Gli elementi più pesanti risultano più bianchi al microscopio elettronico, mentre quelli più leggeri sono più scuri: questo crea dei contrasti che variano in base alla composizione delle fasi delle leghe.

Fusione e colata

Attraverso i processi di fusione e colata si possono produrre leghe della composizione desiderata e con forme specifiche. Può trattarsi di forme ben precise, come nella fusione a cera persa, oppure di semilavorati, come nella colata in pani, che verranno ulteriormente lavorati per modificarne la forma, la struttura e le proprietà. La colata prevede la fusione e poi la solidificazione del metallo fuso. Le successive lavorazioni meccaniche dei pani (o lingotti) ci permettono di rompere le strutture grossolane non uniformi per ottenere strutture più raffinate e quindi più adatte al tipo di produzione che ricerchiamo e alla destinazione d’uso, migliorando fra l’altro anche le proprietà dei materiali.

La struttura delle leghe pressofuse dipende dalla velocità a cui il metallo viene fatto raffreddare e solidificare – la quale, a sua volta, dipende dalle dimensioni dello stampo e dalla conducibilità termica del materiale pressofuso. Per questo, la struttura dei grandi pani è diversa da quella delle piccole fusioni a cera persa. Tra poco vedremo come le condizioni di colata influiscono sui materiali.

Effetti della solidificazione su dimensioni dei grani e forma

Come noto5,6, i metalli puri solidificano a una temperatura fissa: per esempio l’oro solidifica a 1064°C e l’argento a 962°C. La maggior parte delle leghe*, invece, solidifica in un intervallo di temperature: la temperatura del liquidus è la temperatura al di sopra della quale la lega è completamente fusa e al di sotto della quale inizia la solidificazione; il solidus è la temperatura alla quale la solidificazione è completa e quindi, al di sotto di questo valore, la lega è completamente solida. Nei punti intermedi tra liquidus e solidus, la lega ha delle parti liquide e delle parti solide e si trova quindi in uno stato “pastoso”. Le caratteristiche di solidificazione e la struttura che ne deriva sono influenzate dal divario di temperatura tra liquidus e solidus e dalla distribuzione delle fasi.

[*Ci sono alcune eccezioni, come le leghe eutettiche che solidificano a una temperatura fissa come i metalli puri.] 

Per capire il processo di solidificazione, è utile conoscere la struttura atomica e il modo in cui gli atomi si uniscono per formare il materiale solido. Nello stato liquido, gli atomi si muovono in uno schema dinamico e non strutturato. Alcuni atomi si uniscono per breve tempo, formando un piccolo agglomerato, ma poi subito si separano. 

Quando raffreddiamo un liquido (nel nostro caso un metallo fuso), i piccoli agglomerati di atomi si uniscono e restano coesi, formando un nucleo. La formazione di nuclei tende a verificarsi in siti precisi, per esempio in vicinanza delle pareti dello stampo e intorno a particelle di impurità/inclusioni; ma può avvenire anche in punti casuali della massa liquida. A mano a mano che la temperatura scende, sempre più atomi si aggiungono ai piccoli agglomerati stabili che formano i nuclei, unendosi in modo strutturato e dando così vita al reticolo cristallino del metallo o della lega. Nel caso dei metalli preziosi, si forma il sistema cubico faccia-centrato che è stato già trattato in un’altra presentazione1. A questo punto abbiamo gli embrioni di cristalli (cristalliti) che costituiscono la nostra lega. Una rapida velocità di raffreddamento durante la solidificazione dà luogo alla formazione di un maggior numero di nuclei; di conseguenza – poiché ogni nucleo si evolve in un cristallite o grano – avremo una struttura a grano fine. Se la velocità di raffreddamento è più lenta, si formeranno meno nuclei e avremo una struttura più grossolana. Proprio perché la nucleazione avviene intorno a particelle/inclusioni, spesso si aggiungono degli affinatori di grano insolubili, come l’iridio e il rutenio nelle leghe d’oro, per favorire la formazione di nuclei stabili.

I nuclei crescono con l’aggiunta di nuovi atomi dal materiale liquido, che si uniscono secondo le direzioni preferenziali del cristallo, estendendosi dalle facce dei cubi in progressive ramificazioni. Il risultato è una struttura arborescente chiamata “dendrite”. Tutti i nuclei si sviluppano in dendriti, ognuna delle quali ha un orientamento che dipende dall’orientamento del nucleo originario. Ogni dendrite continua a crescere finché non collide con una dendrite adiacente. La linea di contatto tra le due forma un bordo, che chiamiamo “bordo di grano”, ovvero l’interfaccia tra due grani cristallini o cristalliti. Qui, gli atomi di ciascun reticolo non si innestano in modo ordinato e uniforme, ma creano una sottile regione di imperfezione cristallina, di cui abbiamo già parlato in precedenza. La Figura 4 mostra alcune dendriti in una lega di platino7. Si vedono chiaramente diverse dendriti, ognuna delle quali punta verso una direzione diversa. Vediamo spesso queste dendriti nelle cavità di ritiro delle fusioni a cera persa. Se viene alimentato altro metallo liquido, gli spazi tra le dendriti via via si chiudono fino a ottenere il metallo solido. Se non si aggiunge una quantità sufficiente di metallo liquido, resteranno delle cavità di ritiro e quindi delle porosità.

Figura 4 – Immagine SEM di dendriti in una lega Pt-Ru, osservate in una cavità di ritiro (tratta dal rif. 7, vedi Nota bibliografica)

Se esaminiamo una sezione di metallo pressofuso dopo averne trattato la superficie con un corrosivo, come quella nella Figura 3, vediamo chiaramente la struttura dendritica. Notiamo anche che il centro delle dendriti viene intaccato in modo diverso dalle zone esterne; questo è dovuto al fenomeno della segregazione chimica, ovvero il metallo che solidifica prima ha una composizione chimica diversa da quello che solidifica dopo. È il cosiddetto “coring”. Perché questo accada si deduce dalla rappresentazione schematica delle fasi6

Quando versiamo del metallo fuso in uno stampo, la solidificazione inizia vicino alle pareti dello stampo, dove la temperatura è più bassa, procedendo poi verso l’interno. Se si utilizza uno stampo metallico freddo (per esempio in ferro), come si fa di solito per le colate in pani nelle lingottiere, la velocità di raffreddamento è rapida. Dapprima si forma un sottile strato a grano fine (chill layer) a causa dell’alta velocità di nucleazione, poi iniziano a formarsi dei grani più lunghi e sottili, chiamati “grani colonnari”, dall’esterno verso l’interno – dal chill layer verso il centro del lingotto (Figura 5).

Figura 5 – La solidificazione inizia dalle pareti dello stampo, più fredde, e procede verso l’interno

Figura 6 – Struttura dei grani di un metallo colato in una lingottiera a temperatura relativamente alta

Se la temperatura della colata metallica è relativamente alta, la zona colonnare, formata da grani allungati, si estende fino al centro del lingotto (Figura 6). Non è una struttura auspicabile se il lingotto dovrà essere poi laminato, poiché potrebbe fratturarsi nel mezzo (fenomeno del cosiddetto alligatoring, Figura 7), la zona dove fra l’altro tendono a concentrarsi le impurità, poiché è l’ultima porzione del metallo a solidificarsi.

Figura 7 – Frattura a cerniera (alligatoring) di un pane in lega d’oro durante la laminazione

Viceversa, se la temperatura della colata metallica è bassa, la nucleazione avviene con una distribuzione più uniforme nella restante massa liquida, prima che i grani colonnari raggiungano il centro, e si ha una struttura più equiassica nella regione centrale (Figura 8).

Figura 8 – Struttura dei grani di un metallo colato in una lingottiera a temperatura relativamente bassa

Quando si utilizza uno stampo ceramico (gesso), come nelle fusioni a cera persa, la velocità di raffreddamento è nettamente più lenta e si formano grani equiassici in tutta la colata. Questa microstruttura è migliore. La temperatura della fusione e dello stampo hanno quindi un ruolo importante nel determinare le dimensioni dei grani in condizioni “as cast”. Più alta è la temperatura, più grossolane saranno le dimensioni dei grani.

Affinare le microstrutture delle pressofusioni ottimizzando le dimensioni dei grani

Come si è visto, non sempre le microstrutture dei metalli pressofusi sono ottimali per la produzione e le applicazioni previste. La segregazione chimica (coring) e le strutture grossolane possono compromettere le proprietà meccaniche e la resistenza alla corrosione. Si interviene quindi sui semilavorati in pani, con due obiettivi: (a) dare al metallo la forma desiderata (lamina, filo, ecc.) e (b) affinare la struttura. Questo può voler dire rompere i grani più grossi, ridurre la segregazione e affinare le seconde fasi più grossolane per ottenere strutture con distribuzione più uniforme e grani più piccoli. 

Gran parte di questi risultati si ottiene attraverso la lavorazione a caldo del materiale: tramite forgiatura e laminazione, estrusione e/o trafilatura, o con combinazioni di più metodi. In questo modo si affina la struttura e il metallo, addolcito dalla ricottura, è più morbido e duttile. Nelle lavorazioni a caldo, il metallo, deformandosi, raggiunge temperature sufficientemente alte perché avvenga una ricristalizzazione (ricottura) durante la deformazione.

Se vogliamo aumentare la durezza e la resistenza, impartendo una forma più accurata e una migliore qualità superficiale, allora dobbiamo lavorare a freddo il materiale, di solito a temperatura ambiente. In questo caso la temperatura è insufficiente per innescare la ricottura. 

Se lavoriamo troppo un metallo, si possono aprire cricche e fratture; quindi dobbiamo di tanto in tanto ricuocere il metallo lavorato per ripristinare quelle condizioni di morbidezza e duttilità che consentono un’ulteriore lavorazione. La ricottura comporta la ricristalizzazione del materiale, in cui i grani deformati si ricostituiscono e formano nuovi grani non deformati attraverso un processo di nucleazione e crescita analogo a quello della solidificazione.

Lavorazioni a freddo e ricottura: effetti su microstruttura e dimensioni dei grani

Con la lavorazione a freddo, la forma dei metalli cambia e cambia anche la microstruttura del materiale, perché i grani devono subire una deformazione per adeguarsi alla nuova forma. La Figura 9 rappresenta schematicamente una riduzione dello spessore per effetto della laminazione. Per ottenere questo risultato, i piani di atomi in ciascun grano (cristallite) devono scorrere l’uno sull’altro, come illustrato nella Figura 10, sfruttando i difetti cristallini rappresentati dalle cosiddette “dislocazioni”. Lo scorrimento avviene su più piani, in maniera complessa.

Figura 9 – Effetto della lavorazione a freddo sulla microstruttura delle leghe monofasiche

Figura 10 – Rappresentazione schematica dello scorrimento in un reticolo cristallino

Vediamo questa deformazione anche nella macrostruttura generale: la Figura 11 mostra la sezione di un anello durante la lavorazione di upsetting che lo trasformerà in una fede nuziale; l’eterogeneità della deformazione è evidente nel suo aspetto fibroso. La maggioranza dei processi di lavorazione a freddo dà luogo a deformazioni disomogenee visibili in sezione. Nella laminatura e nell’estrusione, per esempio, la deformazione avviene principalmente in superficie, specie se con ogni passata la riduzione impressa è minima. Una deformazione disomogenea può provocare rotture che partono dalla superficie, come ha ben spiegato Battaini8. Le deformazioni non uniformi possono avere ripercussioni anche sulla struttura dei grani nella successiva ricottura, quando avviene il processo di ricristallizzazione. Con la ricristallizzazione, i vecchi grani deformati sono sostituiti da nuovi grani non deformati. Durante la ricristallizzazione, la struttura fibrosa lavorata a freddo viene sostituita da nuovi grani, come si vede nella Figura 12.

Figura 11 – Macrostruttura di un anello in oro bianco nichelato dopo una parziale deformazione di upsetting per la realizzazione di una fede nuziale (tratta dal rif. 8, vedi Nota bibliografica)

Figura 12 – Grani ricristallizzati che sostituiscono la struttura fibrosa del metallo lavorato a freddo nella Figura 11 (tratta dal rif. 8, vedi Nota bibliografica)

Le dimensioni dei grani risultanti dopo la ricottura dipendono dall’entità della lavorazione a freddo, dalla temperatura di ricottura e dal tempo. Più il metallo viene lavorato a freddo, più fine sarà la struttura dei grani ricristallizzati. Se la lavorazione a freddo prima della ricottura è troppo breve, i grani restano ancora grossi, il che non è auspicabile (esiste una “soglia critica” minima di lavorazione a freddo necessaria per dare luogo alla ricristallizzazione, tipicamente una riduzione del 12-15%). Per questo si raccomanda di effettuare la ricottura solo dopo una buona lavorazione a freddo, per esempio una riduzione di spessore del 60%. Anche la temperatura e il tempo di ricottura giocano un ruolo determinante. La Figura 13 riporta una matrice di temperatura e tempo di ricottura per un oro a 18 carati giallo pallido 2N (laminato a freddo per ridurre del 70% il suo spessore), con l’effetto delle due variabili sulle dimensioni dei grani dopo la ricottura (9). La Figura 14 mostra la variazione delle dimensioni dei grani in seguito a ricottura, dovuta a una deformazione disomogenea, nella sezione di un filo a “C” in oro bianco nichelato a 18 carati. L’interno della flangia ha grani più fini mentre le regioni periferiche hanno grani più grossi, a causa della deformazione non uniforme durante la laminazione8. Questo può essere importante in alcune situazioni e meno importante in altre. Lavorando ulteriormente il metallo, per esempio, si potrebbero avere spellamenti e fratture nelle regioni superficiali a grani grossi, come detto in precedenza.

Figura 13 – Effetto della temperatura (asse orizzontale) e del tempo (asse verticale) sulle dimensioni dei grani ricristallizzati di un oro a 18 carati giallo pallido 2N (tratta dal rif. 9, vedi Nota bibliografica)

La Figura 15 illustra schematicamente l’effetto della temperatura di ricottura su durezza/resistenza, duttilità e dimensioni dei grani ricristallizzati. È importante notare che, se la temperatura di ricottura è troppo elevata, si ha una crescita dei grani e al termine del processo si potrebbero avere grani troppo grossi, che compromettono le caratteristiche del materiale e possono causare spellamenti e cricche in caso di ulteriori lavorazioni, come già osservato. Questo può comportare problemi per gli artigiani che lavorano con la torcia a gas, poiché c’è un minor controllo della temperatura durante la ricottura e in genere si tende a surriscaldare il pezzo. Gli ori colorati a 14 carati sono particolarmente soggetti a un’eccessiva crescita dei grani durante la ricottura, come sottolinea Grimwade10.

Figura 14 – Variazione delle dimensioni dei grani in una sezione di filo a “C” in oro bianco nichelato a 18 carati, laminato a freddo e ricotto (tratta dal rif. 8, vedi Nota bibliografica)

Figura 15 – Rappresentazione schematica del comportamento di leghe lavorate a freddo e ricotte, in funzione della temperatura di ricottura. Si noti la regione di crescita dei grani a elevate temperature di ricottura

Leghe bifasiche: se la lega è composta da due (o più) fasi, i processi di lavorazione e ricottura hanno un impatto sulle dimensioni dei grani. La lavorazione delle leghe determina un aumento della dislocazione (difetti cristallini) nella matrice, dovuto alla presenza di una seconda fase più dura; questo porta, a sua volta, a una riduzione delle dimensioni dei grani dopo la ricristallizzazione in seguito a ricottura. Un esempio di lega bifasica è l’argento sterling.

Se la seconda fase ha una struttura molto fine, cioè grani di piccolo diametro uniformemente distribuiti (come nelle leghe indurite per invecchiamento e nelle microleghe), la seconda fase può inibire la ricristallizzazione, poiché le particelle fini della seconda fase “bloccano” i bordi di grano rendendo necessario un aumento della temperatura di ricottura. In queste leghe può formarsi una struttura a grani più grossi o irregolari.

Affinatori di grano per compattare la lega aumentando i punti di nucleazione

Per ottenere un grano più fine nelle leghe d’oro, spesso si aggiungono minime quantità di “affinatori di grano” in polvere fine (normalmente lo 0,1% o percentuali inferiori). Si tratta per esempio di iridio, rutenio e cobalto. L’iridio e il rutenio sono efficaci nella fusione, dove favoriscono la nucleazione dei cristalli durante la solidificazione; il cobalto è utile nella ricottura dei materiali lavorati a freddo, poiché favorisce la nucleazione dei grani durante la ricristallizzazione. Iridio e rutenio sono insolubili negli ori fusi e fungono quindi da siti di nucleazione. La Figura 16 mostra la struttura a grano fine di un oro a 18 carati addizionato di iridio, dopo la ricottura, in confronto a uno senza iridio. Se la quantità di affinatore è eccessiva o non è ben dispersa, si possono formare coalescenze di puntini duri a livello superficiale, che danno luogo al difetto noto come “effetto cometa” in fase di lucidatura11. Va ricordato che gli affinatori di grano non sono efficaci nelle leghe d’oro contenenti silicio.

Figura 16 – Effetto dell’iridio come affinatore di grano in un oro a 18 carati. A sinistra: con Ir; a destra: senza Ir (tratta dal rif. 12, vedi Nota bibliografica)

La quantità di cobalto addizionabile dipende anche dal contenuto in rame della lega, come dimostrato da Ott12. La Figura 17 mostra il suo effetto affinatore in un oro a 14 carati.

Anche altri metalli hanno dimostrato di avere capacità di affinamento del grano nelle leghe d’oro: per esempio boro, berillio, ittrio e i metalli rari, renio, rodio, nichel, bario e zirconio13-16. Recentemente è stato brevettato un mix di iridio, rodio e rutenio che, aggiunto alle leghe primarie di rame, agirebbe da affinatore di grano17.

Figura 17 – Aggiunta di cobalto come affinatore di grano in un oro a 14 carati. A sinistra: con Co; a destra: senza Co (tratta dal rif. 12, vedi Nota bibliografica)

Conclusione

In questa presentazione abbiamo spiegato perché, in gioielleria, sia preferibile avere una struttura cristallina a grano fine (cioè con grani di piccole dimensioni), che ottimizza resistenza, duttilità e altre caratteristiche dei materiali, come la resistenza alla corrosione. Una struttura grossolana può portare a difetti come lo spellamento superficiale nelle successive deformazioni, aumentare il rischio di fratturazione e ridurre resistenza, duttilità e durezza. La resistenza allo snervamento è inversamente proporzionale al quadrato delle dimensioni dei grani.

Abbiamo visto come le condizioni di fusione e colata incidano sulle dimensioni e la forma dei grani “as cast”, influenzando la nucleazione dei cristalliti nella massa fusa e il processo di solidificazione. Un ruolo importante giocano anche la temperatura di fusione e il materiale dello stampo.

Abbiamo esaminato gli effetti delle lavorazioni a freddo sulla macrostruttura dei metalli in condizioni “as cast” e la ricristallizzazione per ricottura, soffermandoci sulle dimensioni dei grani ricristallizzati. La temperatura di ricottura è determinante per ottenere un grano fine. Una temperatura troppo elevata può innescare un’eccessiva crescita dei grani, con conseguenze indesiderate.

L’aggiunta di affinatori di grano, come l’iridio e il cobalto, è molto utile per affinare la struttura delle leghe d’oro. Questi elementi favoriscono la nucleazione dei cristalliti in fase di solidificazione e ricristallizzazione.

Ringraziamenti

Ringrazio gli organizzatori del Jewellery Technology Forum per avermi voluto ancora una volta come relatore e per la cordiale accoglienza. Grazie anche ai molti amici del settore che mi hanno permesso di usare le loro illustrazioni e i loro dati, molti dei quali gentilmente concessi da Mark Grimwade.

Nota bibliografica

  1. Christopher W. Corti, “Basic Metallurgy of the Precious Metals – Part 1”, in The Santa Fe Symposium on Jewelry Manufacturing Technology 2017, cur. Eddie Bell et al. (Albuquerque: Met-Chem Research, 2017), 25-61. Anche 2007: 77-108.
  2. R.W.E. Rushforth, opera inedita, Johnson Matthey Plc, 1978.
  3. Stewart Grice, “Know your defects: The Benefits of Understanding Jewelry Manufacturing Problems”, in The Santa Fe Symposium on Jewelry Manufacturing Technology 2007, cur. Eddie Bell (Albuquerque: Met-Chem Research, 2007), 173-212.
  4. Greg Normandeau, “Applications of the Scanning Electron Microscope for Jewelry Manufacturing”, in The Santa Fe Symposium on Jewelry Manufacturing Technology 2004, cur. Eddie Bell (Albuquerque: Met-Chem Research, 2004), 345-388.
  5. Mark Grimwade, “The Nature of Metals and Alloys”, in The Santa Fe Symposium on Jewelry Manufacturing Technology 2001, Eddie Bell (Albuquerque: Met-Chem Research, 2001), 151-179.
  6. Mark Grimwade, “A Plain Man’s Guide to Alloy Phase Diagrams: Their Use in Jewellery Manufacture – Part 1”, Gold Technology29, estate 2000, 2-15. Su richiesta, l’autore (Corti) può fornire un documento PDF di questa pubblicazione.
  7. John McCloskey, “Microsegregation in Pt-Co and Pt-Ru Jewelry Alloys”, in The Santa Fe Symposium on Jewelry Manufacturing Technology 2006, cur. Eddie Bell (Albuquerque: Met-Chem Research, 2006), 363-376.
  8. Paulo Battaini, “Metallography in Jewelry Fabrication: How to Avoid Problems and Improve Quality”, in The Santa Fe Symposium on Jewelry Manufacturing Technology 2007, cur. Eddie Bell (Albuquerque: Met-Chem Research, 2007), 31-66.
  9. Christian P. Susz, “Recrystallization in 18 Carat Gold Alloys”, Aurum N.2, 1980, 11-14. Su richiesta, l’autore (Corti) può fornire un documento PDF di questa pubblicazione.
  10. Mark Grimwade, Introduction to Precious Metals, Brynmorgan Press, Maine, USA, 2009; ISBN978-1-929565-30-6.
  11. Valerio Faccenda e Michele Condò, “Is ‘Pure’ Gold really Pure?”, in The Santa Fe Symposium on Jewelry Manufacturing Technology 2004, Eddie Bell (Albuquerque: Met-Chem Research, 2004), 135-150.
  12. Dieter Ott, “Influence of Small Additions and Impurities on Gold and Jewelry Gold Alloys”, in The Santa Fe Symposium on Jewelry Manufacturing Technology 1997, Dave Schneller (Albuquerque: Met-Chem Research, 1997), 173-196. Anche: ibid., Gold Technology N.22, 1997, 31-38; e “Optimising Gold Alloys for the Manufacturing Process”, Gold Technology N.34, 2002, 37-44.
  13. S. Rapson e T. Groenewald, Gold Usage, Academic Press, Londra, 1978; ISBN 0-12-581250-7.
  14. Truthe, brevetto americano 2.143.217, gennaio 1939 (attribuito a Degussa).
  15. Johns, brevetto britannico 2434376A, luglio 2007.
  16. Raub e D. Ott, brevetto tedesco DE2803949A1, agosto 1979.
  17. Poliero e A. Basso, brevetto americano 2015/03544029A1, dicembre 2015.

Continue reading