Skip to main content

Importanza del grano cristallino e del suo controllo nella gioielleria

Importanza del grano cristallino e del suo controllo nella gioielleria

una relazione di Chris Corti

Abstract

Il controllo delle dimensioni dei grani cristallini (o cristalliti) nella produzione gioielliera è importante per diversi motivi. Da esso dipendono le proprietà meccaniche, chimiche e fisiche delle leghe, che a loro volta influenzano il processo di produzione e le prestazioni d’uso del gioiello quando sarà indossato dal cliente.
Esistono vari modi per controllare le dimensioni (e la forma) dei grani nelle leghe di metalli preziosi: attraverso la fusione, i processi di lavorazione e la ricottura, nonché con l’uso di additivi alliganti che affinano le dimensioni dei grani durante i trattamenti e la ricottura. Questo documento illustra ed esamina i metodi disponibili, descrivendone i principi, l’usabilità e l’efficacia. Verranno descritti anche alcuni dei problemi dovuti al mancato controllo dimensionale dei grani. La presentazione si concentrerà in particolar modo sulle leghe d’oro, ma senza trascurare gli altri metalli preziosi.

Introduzione

Chiunque abbia a che fare con la realizzazione di gioielli deve conoscere la natura dei metalli e delle leghe impiegati nel settore, e capire come l’alligazione e le lavorazioni dei metalli influiscano sulla microstruttura e, di conseguenza, sulle proprietà di questi materiali. Per il comparto gioielleria, tratteremo in particolare le leghe di metalli preziosi (oro, argento, platino e palladio, tutti metalli estremamente duttili), ma ciò che dirò vale in generale per la maggior parte dei metalli.

Due principali concetti da tenere a mente sono1:

  • La composizione, la microstruttura e i procedimenti di lavorazione delle leghe sono interdipendenti (Figura 1) e, insieme, determinano le proprietà di una lega, siano esse chimiche (per esempio la corrosione e la resistenza all’annerimento), fisiche (densità e colore) o meccaniche (resistenza, malleabilità, durezza). Queste, a loro volta, influenzano la producibilità e le prestazioni d’uso.
  • La maggior parte di metalli e leghe è composta da cristalliti, o grani cristallini, come li chiamiamo noi metallurgisti; pertanto, quasi tutte le leghe sono policristalline. Esistono rare eccezioni di monocristalli, come le leghe impiegate nella fabbricazione di turbine per motori d’aereo, oppure i metalli amorfi (detti anche vetrosi). 

In questa presentazione, voglio concentrarmi sulle macro- e microstrutture delle leghe, in particolare sulle dimensioni e la forma dei grani. Come possiamo modificarle nei processi di fusione e alligazione, nelle lavorazioni meccaniche e nella ricottura? Perché sono importanti?

Figura 1 – Rappresentazione schematica dell’interrelazione fra composizione, microstruttura e procedimenti di lavorazione delle leghe, che ne determina le proprietà

Importanza delle dimensioni dei grani cristallini in gioielleria

Come ben sanno i gioiellieri presenti a questo Jewellery Technology Forum, i metallurgisti sono attenti alle dimensioni dei cristalliti, o grani cristallini, nelle loro leghe. Parliamo di “grani grossi” e “grani fini” e, in generale, diciamo di privilegiare questi ultimi per la produzione dei gioielli. I termini “grossi” e “fini” sono naturalmente relativi. Ai fini pratici, diciamo che “grosso” identifica i grani con dimensioni nell’ordine dei millimetri e “fine” i grani con dimensioni nell’ordine di decimi o centesimi di millimetro (1-100 micron). Le dimensioni dei grani possono essere misurate anche con valori numerici ASTM. Si tratta di un metodo comparativo per misurare le dimensioni dei grani. Più alto è il numero, più piccole sono le dimensioni dei grani.

Perché il controllo delle dimensioni dei grani (e della loro forma) è così importante? La risposta sta nella relazione tra i grani cristallini (cristalliti) e il “bordo di grano” – ovvero la linea di confine tra due grani adiacenti – e l’impatto che questi elementi hanno sui processi di deformazione meccanica. I bordi di grano sono le interfacce dove gli atomi del reticolo cristallino, appartenenti a grani adiacenti, non combaciano in modo omogeneo e creano una sorta di “imperfezione cristallina”, come illustrato nella Figura 2. Queste regioni, oltre ad accumulare impurità, sono più soggette a infragilimento. A temperatura ambiente o a temperature inferiori, il processo di deformazione del materiale sottoposto a un carico è governato essenzialmente dal meccanismo di propagazione delle dislocazioni (le dislocazioni sono difetti lineari della struttura cristallina, responsabili della deformazione lungo i piani di scorrimento). Senza entrare troppo nei dettagli, il risultato è che le leghe con grani più fini sono più resistenti di quelle a grani grossi; e questa caratteristica è espressa dalla legge di Hall-Petch, secondo cui la resistenza allo snervamento σs è inversamente proporzionale alla radice quadrata delle dimensioni del grano:

σs = m/d2

dove d è la dimensione media dei grani e m è una costante. La resistenza allo snervamento di un materiale (detta anche limite elastico o carico di snervamento, in inglese proof stress) è la sollecitazione richiesta per avviare una deformazione plastica ed è inferiore al carico di rottura UTS (Ultimate Tensile Strength).

I gioielli, quindi, sono più duri e resistenti se hanno un grano fine e, al tempo stesso, sono anche più duttili e meno soggetti a incrinature, infragilimento causato da impurità e spellamento superficiale dopo una deformazione. Poiché di norma i gioielli sono esposti a tensioni (carichi) relativamente semplici a temperature ambiente, sia in fase di produzione che durante l’uso, è preferibile scegliere materiali a grano fine. Questa regola di massima vale anche per i componenti ingegneristici non preziosi, come le lamiere metalliche per le carrozzerie delle auto e gli elettrodomestici.

Figura 2 – Rappresentazione schematica di un bordo di grano, dove è evidente l’irregolarità della struttura cristallina lungo la linea di interfaccia

Esistono però dei casi in cui i componenti ingegneristici sono soggetti a tensioni anche molto complesse, per lunghi periodi di tempo e ad alte temperature; per esempio le turbine e i dischi nei motori aeronautici e i tubi delle caldaie nelle centrali elettriche. A temperature così elevate, i principali fenomeni di deformazione sono lo scorrimento viscoso (creep) e la fatica. Lo scorrimento viscoso è la lenta deformazione di un materiale sottoposto a uno sforzo di entità non elevata ma costante; la fatica è la progressiva degradazione e rottura di un materiale sottoposto a carichi variabili nel tempo. Le sigillature in piombo nel tetto in tegole di una chiesa sono un esempio di metallo esposto ad alte temperature, che progressivamente si deforma sotto il suo peso. In queste condizioni, i bordi di grano si indeboliscono e possono scorrere l’uno sull’altro; ecco perché in questi casi è meglio avere dei grani più grossi, in modo da ridurre l’area dei bordi. Nelle applicazioni più gravose, come le palette rotanti delle turbine a gas, si preferisce eliminare del tutto i bordi di grano, utilizzando invece leghe solidificate direzionalmente e leghe monocristalline con un’ottima resistenza alla fatica e allo scorrimento viscoso. Una peculiarità di alcune leghe con grani molto fini e stabili è la cosiddetta “superplasticità”, ossia la capacità di deformarsi in modo molto esteso e progressivo, in particolari condizioni di temperatura, se sottoposte a tensioni di bassa entità – un po’ come la fonduta di formaggio svizzera! Diversi componenti in titanio per l’aeronautica, con forme complesse, vengono prodotti con questa tecnica, come per esempio le grandi palette dei motori Rolls Royce per gli aerei. È interessante notare come l’argento sterling a grano fine, in particolari condizioni2, possa subire una deformazione superplastica. Suppongo quindi che anche altre leghe di metalli preziosi abbiano la stessa capacità; ma finora questo aspetto non è stato sviluppato né sfruttato commercialmente nel nostro settore.

Esame della microstruttura: metallografia

Come molti di voi sapranno, siamo in grado di esaminare la microstruttura e misurare le dimensioni dei grani dei metalli utilizzati in gioielleria. Questo normalmente viene fatto con un microscopio ottico. L’esame delle dimensioni dei grani e della microstruttura dei materiali metallici è materia di studio della “metallografia”. La Figura 3 mostra la microstruttura di una lega d’oro in condizioni “as cast” e dopo lavorazione a freddo e ricristallizzazione. L’aspetto dei due campioni è molto diverso; spiegheremo più avanti perché.

Figura 3 – Microstruttura di una lega d’oro (a) in condizioni “as cast” e (b) dopo lavorazione e ricottura

Normalmente, se vogliamo esaminare la macrostruttura o le microstrutture di una lega, dobbiamo prendere una superficie piana e levigata, dato che i microscopi ottici hanno una profondità di fuoco limitata. Per osservare elementi come i bordi di grano e le seconde fasi, spesso è necessario erodere la superficie con un liquido corrosivo, tipo un acido. Poiché i bordi di grano sono meno perfetti dei cristalli, intaccando la superficie si rivelano facilmente. Dato che i cristalli sono orientati in diverse direzioni rispetto al piano della superficie, anche loro vengono erosi in progressione successiva e quindi, rivelandosi, creano dei contrasti o appaiono di colore diverso all’occhio umano. Se è presente più di una fase, anche queste fasi si rivelano in modo diverso con l’erosione e di solito appaiono di colori diversi oppure alcune sono più scure di altre.

Se occorre un maggiore ingrandimento rispetto a ciò che possiamo ottenere con un microscopio ottico, oppure se vogliamo osservare una superficie irregolare come per esempio una frattura, utilizziamo un microscopio elettronico a scansione (SEM). In questo caso poco importa se la superficie non è liscia e piatta come nella microscopia ottica; anzi, possiamo osservare le diverse fasi attraverso un contrasto che rappresenta le differenze nel numero atomico, senza bisogno di intaccare la superficie con un acido (vedi per esempio la Figura 22 nel riferimento bibliografico 3)3,4. Gli elementi più pesanti risultano più bianchi al microscopio elettronico, mentre quelli più leggeri sono più scuri: questo crea dei contrasti che variano in base alla composizione delle fasi delle leghe.

Fusione e colata

Attraverso i processi di fusione e colata si possono produrre leghe della composizione desiderata e con forme specifiche. Può trattarsi di forme ben precise, come nella fusione a cera persa, oppure di semilavorati, come nella colata in pani, che verranno ulteriormente lavorati per modificarne la forma, la struttura e le proprietà. La colata prevede la fusione e poi la solidificazione del metallo fuso. Le successive lavorazioni meccaniche dei pani (o lingotti) ci permettono di rompere le strutture grossolane non uniformi per ottenere strutture più raffinate e quindi più adatte al tipo di produzione che ricerchiamo e alla destinazione d’uso, migliorando fra l’altro anche le proprietà dei materiali.

La struttura delle leghe pressofuse dipende dalla velocità a cui il metallo viene fatto raffreddare e solidificare – la quale, a sua volta, dipende dalle dimensioni dello stampo e dalla conducibilità termica del materiale pressofuso. Per questo, la struttura dei grandi pani è diversa da quella delle piccole fusioni a cera persa. Tra poco vedremo come le condizioni di colata influiscono sui materiali.

Effetti della solidificazione su dimensioni dei grani e forma

Come noto5,6, i metalli puri solidificano a una temperatura fissa: per esempio l’oro solidifica a 1064°C e l’argento a 962°C. La maggior parte delle leghe*, invece, solidifica in un intervallo di temperature: la temperatura del liquidus è la temperatura al di sopra della quale la lega è completamente fusa e al di sotto della quale inizia la solidificazione; il solidus è la temperatura alla quale la solidificazione è completa e quindi, al di sotto di questo valore, la lega è completamente solida. Nei punti intermedi tra liquidus e solidus, la lega ha delle parti liquide e delle parti solide e si trova quindi in uno stato “pastoso”. Le caratteristiche di solidificazione e la struttura che ne deriva sono influenzate dal divario di temperatura tra liquidus e solidus e dalla distribuzione delle fasi.

[*Ci sono alcune eccezioni, come le leghe eutettiche che solidificano a una temperatura fissa come i metalli puri.] 

Per capire il processo di solidificazione, è utile conoscere la struttura atomica e il modo in cui gli atomi si uniscono per formare il materiale solido. Nello stato liquido, gli atomi si muovono in uno schema dinamico e non strutturato. Alcuni atomi si uniscono per breve tempo, formando un piccolo agglomerato, ma poi subito si separano. 

Quando raffreddiamo un liquido (nel nostro caso un metallo fuso), i piccoli agglomerati di atomi si uniscono e restano coesi, formando un nucleo. La formazione di nuclei tende a verificarsi in siti precisi, per esempio in vicinanza delle pareti dello stampo e intorno a particelle di impurità/inclusioni; ma può avvenire anche in punti casuali della massa liquida. A mano a mano che la temperatura scende, sempre più atomi si aggiungono ai piccoli agglomerati stabili che formano i nuclei, unendosi in modo strutturato e dando così vita al reticolo cristallino del metallo o della lega. Nel caso dei metalli preziosi, si forma il sistema cubico faccia-centrato che è stato già trattato in un’altra presentazione1. A questo punto abbiamo gli embrioni di cristalli (cristalliti) che costituiscono la nostra lega. Una rapida velocità di raffreddamento durante la solidificazione dà luogo alla formazione di un maggior numero di nuclei; di conseguenza – poiché ogni nucleo si evolve in un cristallite o grano – avremo una struttura a grano fine. Se la velocità di raffreddamento è più lenta, si formeranno meno nuclei e avremo una struttura più grossolana. Proprio perché la nucleazione avviene intorno a particelle/inclusioni, spesso si aggiungono degli affinatori di grano insolubili, come l’iridio e il rutenio nelle leghe d’oro, per favorire la formazione di nuclei stabili.

I nuclei crescono con l’aggiunta di nuovi atomi dal materiale liquido, che si uniscono secondo le direzioni preferenziali del cristallo, estendendosi dalle facce dei cubi in progressive ramificazioni. Il risultato è una struttura arborescente chiamata “dendrite”. Tutti i nuclei si sviluppano in dendriti, ognuna delle quali ha un orientamento che dipende dall’orientamento del nucleo originario. Ogni dendrite continua a crescere finché non collide con una dendrite adiacente. La linea di contatto tra le due forma un bordo, che chiamiamo “bordo di grano”, ovvero l’interfaccia tra due grani cristallini o cristalliti. Qui, gli atomi di ciascun reticolo non si innestano in modo ordinato e uniforme, ma creano una sottile regione di imperfezione cristallina, di cui abbiamo già parlato in precedenza. La Figura 4 mostra alcune dendriti in una lega di platino7. Si vedono chiaramente diverse dendriti, ognuna delle quali punta verso una direzione diversa. Vediamo spesso queste dendriti nelle cavità di ritiro delle fusioni a cera persa. Se viene alimentato altro metallo liquido, gli spazi tra le dendriti via via si chiudono fino a ottenere il metallo solido. Se non si aggiunge una quantità sufficiente di metallo liquido, resteranno delle cavità di ritiro e quindi delle porosità.

Figura 4 – Immagine SEM di dendriti in una lega Pt-Ru, osservate in una cavità di ritiro (tratta dal rif. 7, vedi Nota bibliografica)

Se esaminiamo una sezione di metallo pressofuso dopo averne trattato la superficie con un corrosivo, come quella nella Figura 3, vediamo chiaramente la struttura dendritica. Notiamo anche che il centro delle dendriti viene intaccato in modo diverso dalle zone esterne; questo è dovuto al fenomeno della segregazione chimica, ovvero il metallo che solidifica prima ha una composizione chimica diversa da quello che solidifica dopo. È il cosiddetto “coring”. Perché questo accada si deduce dalla rappresentazione schematica delle fasi6

Quando versiamo del metallo fuso in uno stampo, la solidificazione inizia vicino alle pareti dello stampo, dove la temperatura è più bassa, procedendo poi verso l’interno. Se si utilizza uno stampo metallico freddo (per esempio in ferro), come si fa di solito per le colate in pani nelle lingottiere, la velocità di raffreddamento è rapida. Dapprima si forma un sottile strato a grano fine (chill layer) a causa dell’alta velocità di nucleazione, poi iniziano a formarsi dei grani più lunghi e sottili, chiamati “grani colonnari”, dall’esterno verso l’interno – dal chill layer verso il centro del lingotto (Figura 5).

Figura 5 – La solidificazione inizia dalle pareti dello stampo, più fredde, e procede verso l’interno

Figura 6 – Struttura dei grani di un metallo colato in una lingottiera a temperatura relativamente alta

Se la temperatura della colata metallica è relativamente alta, la zona colonnare, formata da grani allungati, si estende fino al centro del lingotto (Figura 6). Non è una struttura auspicabile se il lingotto dovrà essere poi laminato, poiché potrebbe fratturarsi nel mezzo (fenomeno del cosiddetto alligatoring, Figura 7), la zona dove fra l’altro tendono a concentrarsi le impurità, poiché è l’ultima porzione del metallo a solidificarsi.

Figura 7 – Frattura a cerniera (alligatoring) di un pane in lega d’oro durante la laminazione

Viceversa, se la temperatura della colata metallica è bassa, la nucleazione avviene con una distribuzione più uniforme nella restante massa liquida, prima che i grani colonnari raggiungano il centro, e si ha una struttura più equiassica nella regione centrale (Figura 8).

Figura 8 – Struttura dei grani di un metallo colato in una lingottiera a temperatura relativamente bassa

Quando si utilizza uno stampo ceramico (gesso), come nelle fusioni a cera persa, la velocità di raffreddamento è nettamente più lenta e si formano grani equiassici in tutta la colata. Questa microstruttura è migliore. La temperatura della fusione e dello stampo hanno quindi un ruolo importante nel determinare le dimensioni dei grani in condizioni “as cast”. Più alta è la temperatura, più grossolane saranno le dimensioni dei grani.

Affinare le microstrutture delle pressofusioni ottimizzando le dimensioni dei grani

Come si è visto, non sempre le microstrutture dei metalli pressofusi sono ottimali per la produzione e le applicazioni previste. La segregazione chimica (coring) e le strutture grossolane possono compromettere le proprietà meccaniche e la resistenza alla corrosione. Si interviene quindi sui semilavorati in pani, con due obiettivi: (a) dare al metallo la forma desiderata (lamina, filo, ecc.) e (b) affinare la struttura. Questo può voler dire rompere i grani più grossi, ridurre la segregazione e affinare le seconde fasi più grossolane per ottenere strutture con distribuzione più uniforme e grani più piccoli. 

Gran parte di questi risultati si ottiene attraverso la lavorazione a caldo del materiale: tramite forgiatura e laminazione, estrusione e/o trafilatura, o con combinazioni di più metodi. In questo modo si affina la struttura e il metallo, addolcito dalla ricottura, è più morbido e duttile. Nelle lavorazioni a caldo, il metallo, deformandosi, raggiunge temperature sufficientemente alte perché avvenga una ricristalizzazione (ricottura) durante la deformazione.

Se vogliamo aumentare la durezza e la resistenza, impartendo una forma più accurata e una migliore qualità superficiale, allora dobbiamo lavorare a freddo il materiale, di solito a temperatura ambiente. In questo caso la temperatura è insufficiente per innescare la ricottura. 

Se lavoriamo troppo un metallo, si possono aprire cricche e fratture; quindi dobbiamo di tanto in tanto ricuocere il metallo lavorato per ripristinare quelle condizioni di morbidezza e duttilità che consentono un’ulteriore lavorazione. La ricottura comporta la ricristalizzazione del materiale, in cui i grani deformati si ricostituiscono e formano nuovi grani non deformati attraverso un processo di nucleazione e crescita analogo a quello della solidificazione.

Lavorazioni a freddo e ricottura: effetti su microstruttura e dimensioni dei grani

Con la lavorazione a freddo, la forma dei metalli cambia e cambia anche la microstruttura del materiale, perché i grani devono subire una deformazione per adeguarsi alla nuova forma. La Figura 9 rappresenta schematicamente una riduzione dello spessore per effetto della laminazione. Per ottenere questo risultato, i piani di atomi in ciascun grano (cristallite) devono scorrere l’uno sull’altro, come illustrato nella Figura 10, sfruttando i difetti cristallini rappresentati dalle cosiddette “dislocazioni”. Lo scorrimento avviene su più piani, in maniera complessa.

Figura 9 – Effetto della lavorazione a freddo sulla microstruttura delle leghe monofasiche

Figura 10 – Rappresentazione schematica dello scorrimento in un reticolo cristallino

Vediamo questa deformazione anche nella macrostruttura generale: la Figura 11 mostra la sezione di un anello durante la lavorazione di upsetting che lo trasformerà in una fede nuziale; l’eterogeneità della deformazione è evidente nel suo aspetto fibroso. La maggioranza dei processi di lavorazione a freddo dà luogo a deformazioni disomogenee visibili in sezione. Nella laminatura e nell’estrusione, per esempio, la deformazione avviene principalmente in superficie, specie se con ogni passata la riduzione impressa è minima. Una deformazione disomogenea può provocare rotture che partono dalla superficie, come ha ben spiegato Battaini8. Le deformazioni non uniformi possono avere ripercussioni anche sulla struttura dei grani nella successiva ricottura, quando avviene il processo di ricristallizzazione. Con la ricristallizzazione, i vecchi grani deformati sono sostituiti da nuovi grani non deformati. Durante la ricristallizzazione, la struttura fibrosa lavorata a freddo viene sostituita da nuovi grani, come si vede nella Figura 12.

Figura 11 – Macrostruttura di un anello in oro bianco nichelato dopo una parziale deformazione di upsetting per la realizzazione di una fede nuziale (tratta dal rif. 8, vedi Nota bibliografica)

Figura 12 – Grani ricristallizzati che sostituiscono la struttura fibrosa del metallo lavorato a freddo nella Figura 11 (tratta dal rif. 8, vedi Nota bibliografica)

Le dimensioni dei grani risultanti dopo la ricottura dipendono dall’entità della lavorazione a freddo, dalla temperatura di ricottura e dal tempo. Più il metallo viene lavorato a freddo, più fine sarà la struttura dei grani ricristallizzati. Se la lavorazione a freddo prima della ricottura è troppo breve, i grani restano ancora grossi, il che non è auspicabile (esiste una “soglia critica” minima di lavorazione a freddo necessaria per dare luogo alla ricristallizzazione, tipicamente una riduzione del 12-15%). Per questo si raccomanda di effettuare la ricottura solo dopo una buona lavorazione a freddo, per esempio una riduzione di spessore del 60%. Anche la temperatura e il tempo di ricottura giocano un ruolo determinante. La Figura 13 riporta una matrice di temperatura e tempo di ricottura per un oro a 18 carati giallo pallido 2N (laminato a freddo per ridurre del 70% il suo spessore), con l’effetto delle due variabili sulle dimensioni dei grani dopo la ricottura (9). La Figura 14 mostra la variazione delle dimensioni dei grani in seguito a ricottura, dovuta a una deformazione disomogenea, nella sezione di un filo a “C” in oro bianco nichelato a 18 carati. L’interno della flangia ha grani più fini mentre le regioni periferiche hanno grani più grossi, a causa della deformazione non uniforme durante la laminazione8. Questo può essere importante in alcune situazioni e meno importante in altre. Lavorando ulteriormente il metallo, per esempio, si potrebbero avere spellamenti e fratture nelle regioni superficiali a grani grossi, come detto in precedenza.

Figura 13 – Effetto della temperatura (asse orizzontale) e del tempo (asse verticale) sulle dimensioni dei grani ricristallizzati di un oro a 18 carati giallo pallido 2N (tratta dal rif. 9, vedi Nota bibliografica)

La Figura 15 illustra schematicamente l’effetto della temperatura di ricottura su durezza/resistenza, duttilità e dimensioni dei grani ricristallizzati. È importante notare che, se la temperatura di ricottura è troppo elevata, si ha una crescita dei grani e al termine del processo si potrebbero avere grani troppo grossi, che compromettono le caratteristiche del materiale e possono causare spellamenti e cricche in caso di ulteriori lavorazioni, come già osservato. Questo può comportare problemi per gli artigiani che lavorano con la torcia a gas, poiché c’è un minor controllo della temperatura durante la ricottura e in genere si tende a surriscaldare il pezzo. Gli ori colorati a 14 carati sono particolarmente soggetti a un’eccessiva crescita dei grani durante la ricottura, come sottolinea Grimwade10.

Figura 14 – Variazione delle dimensioni dei grani in una sezione di filo a “C” in oro bianco nichelato a 18 carati, laminato a freddo e ricotto (tratta dal rif. 8, vedi Nota bibliografica)

Figura 15 – Rappresentazione schematica del comportamento di leghe lavorate a freddo e ricotte, in funzione della temperatura di ricottura. Si noti la regione di crescita dei grani a elevate temperature di ricottura

Leghe bifasiche: se la lega è composta da due (o più) fasi, i processi di lavorazione e ricottura hanno un impatto sulle dimensioni dei grani. La lavorazione delle leghe determina un aumento della dislocazione (difetti cristallini) nella matrice, dovuto alla presenza di una seconda fase più dura; questo porta, a sua volta, a una riduzione delle dimensioni dei grani dopo la ricristallizzazione in seguito a ricottura. Un esempio di lega bifasica è l’argento sterling.

Se la seconda fase ha una struttura molto fine, cioè grani di piccolo diametro uniformemente distribuiti (come nelle leghe indurite per invecchiamento e nelle microleghe), la seconda fase può inibire la ricristallizzazione, poiché le particelle fini della seconda fase “bloccano” i bordi di grano rendendo necessario un aumento della temperatura di ricottura. In queste leghe può formarsi una struttura a grani più grossi o irregolari.

Affinatori di grano per compattare la lega aumentando i punti di nucleazione

Per ottenere un grano più fine nelle leghe d’oro, spesso si aggiungono minime quantità di “affinatori di grano” in polvere fine (normalmente lo 0,1% o percentuali inferiori). Si tratta per esempio di iridio, rutenio e cobalto. L’iridio e il rutenio sono efficaci nella fusione, dove favoriscono la nucleazione dei cristalli durante la solidificazione; il cobalto è utile nella ricottura dei materiali lavorati a freddo, poiché favorisce la nucleazione dei grani durante la ricristallizzazione. Iridio e rutenio sono insolubili negli ori fusi e fungono quindi da siti di nucleazione. La Figura 16 mostra la struttura a grano fine di un oro a 18 carati addizionato di iridio, dopo la ricottura, in confronto a uno senza iridio. Se la quantità di affinatore è eccessiva o non è ben dispersa, si possono formare coalescenze di puntini duri a livello superficiale, che danno luogo al difetto noto come “effetto cometa” in fase di lucidatura11. Va ricordato che gli affinatori di grano non sono efficaci nelle leghe d’oro contenenti silicio.

Figura 16 – Effetto dell’iridio come affinatore di grano in un oro a 18 carati. A sinistra: con Ir; a destra: senza Ir (tratta dal rif. 12, vedi Nota bibliografica)

La quantità di cobalto addizionabile dipende anche dal contenuto in rame della lega, come dimostrato da Ott12. La Figura 17 mostra il suo effetto affinatore in un oro a 14 carati.

Anche altri metalli hanno dimostrato di avere capacità di affinamento del grano nelle leghe d’oro: per esempio boro, berillio, ittrio e i metalli rari, renio, rodio, nichel, bario e zirconio13-16. Recentemente è stato brevettato un mix di iridio, rodio e rutenio che, aggiunto alle leghe primarie di rame, agirebbe da affinatore di grano17.

Figura 17 – Aggiunta di cobalto come affinatore di grano in un oro a 14 carati. A sinistra: con Co; a destra: senza Co (tratta dal rif. 12, vedi Nota bibliografica)

Conclusione

In questa presentazione abbiamo spiegato perché, in gioielleria, sia preferibile avere una struttura cristallina a grano fine (cioè con grani di piccole dimensioni), che ottimizza resistenza, duttilità e altre caratteristiche dei materiali, come la resistenza alla corrosione. Una struttura grossolana può portare a difetti come lo spellamento superficiale nelle successive deformazioni, aumentare il rischio di fratturazione e ridurre resistenza, duttilità e durezza. La resistenza allo snervamento è inversamente proporzionale al quadrato delle dimensioni dei grani.

Abbiamo visto come le condizioni di fusione e colata incidano sulle dimensioni e la forma dei grani “as cast”, influenzando la nucleazione dei cristalliti nella massa fusa e il processo di solidificazione. Un ruolo importante giocano anche la temperatura di fusione e il materiale dello stampo.

Abbiamo esaminato gli effetti delle lavorazioni a freddo sulla macrostruttura dei metalli in condizioni “as cast” e la ricristallizzazione per ricottura, soffermandoci sulle dimensioni dei grani ricristallizzati. La temperatura di ricottura è determinante per ottenere un grano fine. Una temperatura troppo elevata può innescare un’eccessiva crescita dei grani, con conseguenze indesiderate.

L’aggiunta di affinatori di grano, come l’iridio e il cobalto, è molto utile per affinare la struttura delle leghe d’oro. Questi elementi favoriscono la nucleazione dei cristalliti in fase di solidificazione e ricristallizzazione.

Ringraziamenti

Ringrazio gli organizzatori del Jewellery Technology Forum per avermi voluto ancora una volta come relatore e per la cordiale accoglienza. Grazie anche ai molti amici del settore che mi hanno permesso di usare le loro illustrazioni e i loro dati, molti dei quali gentilmente concessi da Mark Grimwade.

Nota bibliografica

  1. Christopher W. Corti, “Basic Metallurgy of the Precious Metals – Part 1”, in The Santa Fe Symposium on Jewelry Manufacturing Technology 2017, cur. Eddie Bell et al. (Albuquerque: Met-Chem Research, 2017), 25-61. Anche 2007: 77-108.
  2. R.W.E. Rushforth, opera inedita, Johnson Matthey Plc, 1978.
  3. Stewart Grice, “Know your defects: The Benefits of Understanding Jewelry Manufacturing Problems”, in The Santa Fe Symposium on Jewelry Manufacturing Technology 2007, cur. Eddie Bell (Albuquerque: Met-Chem Research, 2007), 173-212.
  4. Greg Normandeau, “Applications of the Scanning Electron Microscope for Jewelry Manufacturing”, in The Santa Fe Symposium on Jewelry Manufacturing Technology 2004, cur. Eddie Bell (Albuquerque: Met-Chem Research, 2004), 345-388.
  5. Mark Grimwade, “The Nature of Metals and Alloys”, in The Santa Fe Symposium on Jewelry Manufacturing Technology 2001, Eddie Bell (Albuquerque: Met-Chem Research, 2001), 151-179.
  6. Mark Grimwade, “A Plain Man’s Guide to Alloy Phase Diagrams: Their Use in Jewellery Manufacture – Part 1”, Gold Technology29, estate 2000, 2-15. Su richiesta, l’autore (Corti) può fornire un documento PDF di questa pubblicazione.
  7. John McCloskey, “Microsegregation in Pt-Co and Pt-Ru Jewelry Alloys”, in The Santa Fe Symposium on Jewelry Manufacturing Technology 2006, cur. Eddie Bell (Albuquerque: Met-Chem Research, 2006), 363-376.
  8. Paulo Battaini, “Metallography in Jewelry Fabrication: How to Avoid Problems and Improve Quality”, in The Santa Fe Symposium on Jewelry Manufacturing Technology 2007, cur. Eddie Bell (Albuquerque: Met-Chem Research, 2007), 31-66.
  9. Christian P. Susz, “Recrystallization in 18 Carat Gold Alloys”, Aurum N.2, 1980, 11-14. Su richiesta, l’autore (Corti) può fornire un documento PDF di questa pubblicazione.
  10. Mark Grimwade, Introduction to Precious Metals, Brynmorgan Press, Maine, USA, 2009; ISBN978-1-929565-30-6.
  11. Valerio Faccenda e Michele Condò, “Is ‘Pure’ Gold really Pure?”, in The Santa Fe Symposium on Jewelry Manufacturing Technology 2004, Eddie Bell (Albuquerque: Met-Chem Research, 2004), 135-150.
  12. Dieter Ott, “Influence of Small Additions and Impurities on Gold and Jewelry Gold Alloys”, in The Santa Fe Symposium on Jewelry Manufacturing Technology 1997, Dave Schneller (Albuquerque: Met-Chem Research, 1997), 173-196. Anche: ibid., Gold Technology N.22, 1997, 31-38; e “Optimising Gold Alloys for the Manufacturing Process”, Gold Technology N.34, 2002, 37-44.
  13. S. Rapson e T. Groenewald, Gold Usage, Academic Press, Londra, 1978; ISBN 0-12-581250-7.
  14. Truthe, brevetto americano 2.143.217, gennaio 1939 (attribuito a Degussa).
  15. Johns, brevetto britannico 2434376A, luglio 2007.
  16. Raub e D. Ott, brevetto tedesco DE2803949A1, agosto 1979.
  17. Poliero e A. Basso, brevetto americano 2015/03544029A1, dicembre 2015.

Continue reading

Jewels from 2020 – Designing innovation

Jewels from 2020 – Designing innovation

a speech by Beatriz Biagi

Jewellery trends evolve slowly. While other industrial sectors develop and adopt technological innovations quickly, the fine jewellery sector around the globe largely sticks to “same old” production and commercial procedures, feeling no urge to change. Cultural and security issues play a major role in both, keeping fine jewellery a priority for established customers and failing to address a growing number of potential customers.

Over the past 3 decades customer attitudes towards precious jewellery have not changed significantly for a large majority of rooted customers, for whom jewellery purchasing follows the cultural affinity matured over centuries and is essentially linked to special occasions, investment and heritage. This will most probably remain unvaried in the future, as long as the precious materials used are considered highly valuable. And as long as this customer segment remains big enough to justify keeping business practices unvaried. However, there are enough trend indicators showing that expectations are different for a growing number of clients and that what jewellery and luxury products represent will change over the next decades.

During the last 15 years it has become evident that the two major factors inducing a shift in our lives are Technology and Sustainability. We have observed new areas of opportunity being addressed often by newcomers and start-ups also in the fine jewellery scenario.  Precious wearable technologies, medical and communication devices, digital marketplaces and on-demand productions have steadily grown, bringing innovation into the international jewellery scenario.

As predicted in 2006, Sustainability has permeated across all products and is becoming a mainstream trend, as environmental and ethical awareness persistently grows. Although ethical correctness rises operation costs, there is ground to believe that customers will be willing to pay a premium for transparency and sustainability in jewellery or rather spend their disposable income in products and services of brands that adopt and can guarantee best practices. Putting sustainability as a priority by clients is a still quite irrelevant purchasing attitude in the jewellery business, but will gain importance in the years to come.

It is clear that in a luxury business based on gems and metals, environmental sustainability and ethical issues are not necessarily embedded in the system. Nevertheless, many companies are embracing the urge to protect the sources of the materials used, specially when talking about gems produced by living organisms, and to protect all persons involved in the process of extracting materials and transforming them at all stages, up to the production of fine jewellery or other luxury products.

For sure the jewellery sector is starting to adapt to today’s reality. In the past years we have seen a rise in online purchasing, as well as digital communication and client engagement.

We are seeing more significant efforts of businesses and brands to implement ethically correct procedures throughout the trade, aligning to voluntary standards and certifications.

On the other hand, experiential purchasing is gaining importance among young generations against purchases driven by investment or by attachment to traditions. These changes of attitudes and expectations towards fine jewellery in young generations will affect our sector differently, depending on the cultural environment of customers and their degree of affinity and attachment towards precious jewellery.

Today more than ever products and brands are successful if their stories are opportunely conveyed. In the past fine jewellery didn’t need to be supported by any communication or promotional activities. It literally sold just because it existed, as a large part of the population was culturally attached to what fine jewellery and precious metals meant. This is still the case for a large number of customers, especially in rural areas in Asia and among mature generations.

But as customers adopt a more metropolitan and global lifestyle, they lose the emotional connection towards fine jewellery. As customers become younger and more digitalised, they tend not to follow customs and habits dictated by traditional rituals as their parents and grandparents did. They start investing their time and resources in emotional products and experiences that satisfy their personal and needs and individual desires.

We are not talking about an ephemeral style trend. Any jewellery company that wants to be successful in the next decades needs to approach innovation by implementing a coordinated project that addresses design, product development and marketing. It is time to fully understand that it is not by using ideas of internship design students or by launching an Instagram influencer campaign, that we will build competitivity in the mid-term.

The development of successful proposals requires in the first place a correct problem setting and I would like to focus on that today. There are some fundamental questions to be answered regarding why somebody would want to buy our products and how. We have to understand the decision process involved in any successful product purchase and define the spectrum of possible paths to ideally pursue the best match between what we can offer and what our clients require.

Who decides for the style of the jewellery piece and who for the budget to be spent or invested? Very often these decisions are made by two (or more) persons independently, who nevertheless have to be sure they make the right choice even not directly confronting themselves with what the other person decides, but relying on the jeweller’s recommendations.

For which occasion will my product be purchased? A different story will be told if the jewellery piece is proposed for an anniversary, an engagement or a wedding, for a religious festival or festivity, for Valentine’s day or Mother’s day, as a treat or just for fun.

Who will purchase the product, where and how? A complete different set of values and buying attitudes need to be taken in consideration if the proposed jewellery will be self-purchased or bought as a gift, and if it will be bought by a woman or a man. This is the case also while analysing the purchasing process when bridal jewellery is at stake. For example, we can observe a complete different scenario selling a wedding set in India, rather than an engagement ring in the US. Furthermore, we need to understand the attitudes and expectations of those who will wear the jewellery pieces, their lifestyles, concerns and interests. And last but not least, we need to learn to communicate and engage with our clients addressing barriers we are already facing now, such as misinformation, false and counterfeited products or lack of trust.

But most importantly, we need to understand and attract our potential clients. Potential clients are by definition non-existing clients and actually we need to get to know them as accurate as possible, even before we start communicating with them. This segment represents the most difficult target, needing more resources invested for often uncertain returns. Our potential clients nowadays are represented mainly by young millennials and the youngest incoming gen-Z customers in metropolitan areas. Many consumer surveys show these young potential customers have different purchasing behaviours as precedent generations, due to the fact that they rely on digital technologies for every aspect of their lives.

This means for example, they will seek information and feedback from other customers on the net, rather than going to physical stores or ask advise form their families or close friends. Relying on digital technologies also means they demand immediate and personalised proposals, easy purchasing and hassle-free returns and product changes. They need to feel good about their choices, even if decisions might seem casual or thoughtless. It means they no longer keep long-term fidelity towards brands and can spontaneously change their minds. 

Digital technologies are in fact provoking a process of dematerialisation in every aspect of our lives. The meaning of wealth and luxury will inevitably continue to evolve, provoking a shift in the value perception of precious materials. Sustainability and ethical issues are being placed by the general public into the top of the value scale, which leads to questioning the need of using precious metals and natural gems in the first place. The idea of luxury itself is changing, in a world in which basic elements such as clean water, time and peace are to become the most-sought treasures. It becomes clear that in a longer term, the value perception of precious jewellery will no longer be as we know it today and that we need to start taking action to be able to satisfy our future clients.

Each company needs to understand which functions and services will be sought for by their potential client segment, which materials and products and will be accepted and which procedures must be put in place to be coherent. It is crucial to fully understand which message needs to be conveyed  today and what kind of stories brands and products will have to tell in the future, in order to change, not losing any of the existing strengths but rather strengthening the growing potential.

In any case the jewellery sector needs to seriously invest resources not only thinking which products will sell, but also which services and emotions should be accordingly offered. There are many positive attitudes linked to jewellery purchasing, that should no longer be taken for granted, but consciously processed to be built upon.

We should ask ourselves as jewellery makers and sellers which positive experiences do we evoke and can we provoke? To whom? We should understand what it means that our jewellery will represent a valuable treasure for a bride or will become a style statement for the wearer. What it takes to be seen and chosen with the help of a family jeweller or proposed by a recognised brand. How precious materials can become luxury accessories, personal communication or medical devices, religious or status symbols and how these bring security and happiness.

The role of precious jewellery is deeply embedded in human nature, and it will continue to be so, as long as it evolves into the shapes, symbols and functions clients look for. 

The positive elements that precious jewellery is capable of arousing in the pubic represent the most convincing source for competitivity and as such, need to  be wisely addressed and communicated. These represent the solid foundations that will guide us throughout the next decade to generate a compelling business personality.


Continue reading

Gioielli dal 2020 – Progettare innovazione

Gioielli dal 2020 – Progettare Innovazione

una relazione di Beatriz Biagi

In gioielleria, i trend si evolvono lentamente. Mentre altri settori cavalcano l’onda delle novità tecnologiche, l’alta gioielleria nel mondo resta fedele alla “vecchia” produzione e alle consuete prassi commerciali, senza avvertire alcuna urgenza di cambiamento. Lo status quo viene mantenuto per ragioni culturali e di sicurezza, e la gioielleria importante resta appannaggio dei clienti tradizionali, mancando di attingere a un bacino crescente di potenziali acquirenti.

L’alta gioielleria è legata a occasioni speciali, investimenti ed eredità e negli ultimi 30 anni l’atteggiamento dei clienti non è cambiato, specchio di un’affinità culturale maturata nei secoli – che probabilmente continuerà a esistere finché i materiali utilizzati conserveranno la loro aura di pregio esclusivo e finché il segmento target sarà abbastanza ampio da giustificare l’immobilità delle prassi di business. Ma già si avvertono i primi segnali di cambiamento: molti clienti hanno aspettative diverse e il significato simbolico di gioielli e prodotti di lusso muterà nei prossimi decenni.

Due grandi fattori hanno plasmato le nostre vite negli ultimi 15 anni: la tecnologia e la sostenibilità. Anche nell’alta gioielleria si sono aperti nuovi spazi, che player emergenti e start-up non hanno tardato a occupare. Tecnologie indossabili, dispositivi medicali e di comunicazione, mercati digitali e produzione on-demand hanno registrato una crescita costante, portando una ventata di innovazione nel settore internazionale del gioiello.

Come previsto nel 2006, la sostenibilità è ormai un valore chiave per ogni prodotto e sta diventando un trend dominante, insieme a una crescente consapevolezza etica e ambientale. Produrre eticamente fa aumentare i costi, ma senza dubbio esistono clienti disposti a pagare un prezzo premio pur di avere trasparenza e sostenibilità nei gioielli, o comunque a investire il proprio denaro in prodotti e servizi di marchi che adottino e garantiscano l’applicazione di best practice. La sostenibilità non figura ancora tra i criteri prioritari nell’acquisto di un gioiello, ma avrà sempre più importanza negli anni a venire.

È chiaro che, in un comparto del lusso che tratta gemme e metalli, la sostenibilità ambientale e le questioni etiche non siano parametri fondamentali del sistema. Ciononostante, molti brand sono sempre più attenti alla provenienza dei materiali utilizzati, soprattutto delle gemme prodotte da organismi viventi, e alla tutela delle persone coinvolte nei processi di estrazione e lavorazione, fino alla produzione dei gioielli e di altri articoli di lusso.

Sicuramente l’alta gioielleria sta cominciando ad adattarsi alla realtà odierna. Negli ultimi anni sono aumentate le vendite online e le interazioni digitali con i clienti.

Le aziende e i marchi si impegnano ad adottare procedure eticamente corrette in ogni fase del business, allineandosi volontariamente a standard e certificazioni.

Al tempo stesso, assume nuova rilevanza tra i giovani il lato esperienziale dell’acquisto, contrapponendosi alle mere scelte d’investimento o all’aderenza alle tradizioni. Questi cambiamenti di attitudine e aspettative nei confronti della gioielleria di qualità nelle nuove generazioni avranno un impatto sul nostro settore, diverso a seconda dell’ambiente culturale dei clienti e del loro grado di affinità e attaccamento verso i preziosi.

Oggi più che mai, brand e prodotti hanno successo se sanno raccontare bene le loro storie. In passato l’alta gioielleria non aveva bisogno di strategie di comunicazione o attività promozionali. Per vendere bastava esistere, dato che tante persone erano culturalmente legate al significato intrinseco dei gioielli e dei metalli preziosi. Questo è ancora vero per molti clienti, soprattutto nelle zone rurali dell’Asia e tra le generazioni più mature.

Ma con il diffondersi di uno stile di vita globalizzato e metropolitano, la connessione emotiva con i gioielli di lusso si assottiglia sempre più. I clienti, più giovani e digitalizzati, si discostano dai riti della tradizione e non seguono più gli usi e i costumi dei genitori e dei nonni, preferendo investire tempo e risorse in prodotti ed esperienze che regalino emozioni in linea con le esigenze e i desideri personali.

Non stiamo parlando di un trend effimero. Per avere successo nei prossimi decenni, i creatori di gioielli dovranno puntare all’innovazione attuando un progetto coordinato che abbracci design, sviluppo del prodotto e marketing. Una cosa sia chiara: non è sfruttando le idee degli stagisti del reparto design né lanciando una campagna di Influencer Marketing su Instagram che si diventa competitivi nel medio termine.

Lo sviluppo di una proposta efficace parte da una corretta individuazione dei problemi e su questo vorrei concentrarmi oggi. Ci sono delle domande fondamentali a cui dobbiamo rispondere sul perché qualcuno dovrebbe voler acquistare i nostri prodotti e come. Dobbiamo capire il processo decisionale che sta dietro l’acquisto di ogni prodotto e definire lo spettro di percorsi possibili per trovare la corrispondenza ideale tra ciò che possiamo offrire e ciò di cui i nostri clienti hanno bisogno.

Chi decide lo stile di un gioiello e chi il budget da spendere o investire? Molto spesso queste decisioni vengono prese da due o più persone in modo indipendente, ma che comunque devono accertarsi di fare la scelta giusta anche senza confrontarsi direttamente con gli altri interlocutori, ma affidandosi ai consigli del gioielliere.

Per quale occasione sarà acquistato il mio prodotto? Dovremo raccontare una storia diversa a seconda che il gioiello venga proposto per un anniversario, un fidanzamento o un matrimonio, per una festività o una ricorrenza religiosa, per San Valentino o per la Festa della Mamma, come una piacevole “follia” o per il piacere di fare un regalo.

Chi acquisterà il prodotto, dove e come? Il set valoriale e le attitudini alla base dell’acquisto saranno completamente diversi se il cliente acquista il gioiello per sé o per un’altra persona, se il gioiello viene acquistato da una donna o da un uomo. Questo vale anche nell’analisi del processo d’acquisto dei gioielli nuziali. Siamo di fronte a scenari completamente diversi se pensiamo, per esempio, alla vendita di una parure di gioielli per una sposa indiana rispetto alla scelta di un anello di fidanzamento negli Stati Uniti. Non solo. Dobbiamo capire a fondo le attitudini e le aspettative della persona che indosserà i gioielli, il suo stile di vita, le sue difficoltà e i suoi interessi. E da ultimo, ma non per questo meno importante, dobbiamo imparare a comunicare con i nostri clienti e coinvolgerli abbattendo le barriere che già oggi incontriamo, come la disinformazione, i prodotti falsi e contraffatti, la sfiducia.

Ma soprattutto dobbiamo capire e attrarre i nostri potenziali clienti. I potenziali clienti sono, per definizione, clienti inesistenti e quindi dobbiamo studiarli con grande attenzione ancor prima di iniziare a comunicare con loro. Questo segmento è il target più ostico, che richiede un investimento maggiore di risorse e non promette un ritorno certo. Oggi i nostri potenziali clienti sono rappresentati essenzialmente dai giovani Millennials e dagli ancora più giovani esponenti della Generazione Z nelle aree urbane. Molte indagini di mercato indicano che questi potenziali clienti hanno comportamenti d’acquisto diversi da quelli delle generazioni precedenti, per via del fatto che usano le tecnologie digitali per ogni aspetto della propria vita.

Per esempio, cercano informazioni e leggono i pareri di altri clienti sul Web, invece di andare personalmente nei negozi o chiedere consiglio ad amici e parenti. Affidarsi completamente alle tecnologie digitali significa anche che si aspettano un’offerta immediata e personalizzata, acquisti semplici e la possibilità di rendere e sostituire i prodotti senza fatica. Devono sentire di aver fatto la scelta giusta, per quanto spensierata o disinvolta possa sembrare questa scelta. Questo target non è fedele ai brand a lungo termine e spesso e volentieri cambia idea.

Le tecnologie digitali hanno innescato un processo di smaterializzazione in ogni aspetto della nostra vita. Il significato di ricchezza e lusso continuerà inevitabilmente a evolversi, cambiando la percezione del valore dei materiali preziosi. Etica e sostenibilità sono in cima alla scala dei valori del grande pubblico e questo porta a interrogarsi sulla reale necessità di utilizzare gemme naturali e metalli preziosi. L’idea stessa di lusso sta cambiando, in un mondo in cui elementi fondamentali come l’acqua pulita, il tempo e la pace diventano i tesori più ricercati. È chiaro che, nel lungo periodo, la percezione del valore dell’alta gioielleria sarà diversa da quella che conosciamo oggi, e che dobbiamo metterci subito al lavoro per soddisfare le esigenze dei nostri futuri clienti.

Ogni azienda deve capire quali saranno le funzioni e i servizi più richiesti dal proprio target di riferimento; quali materiali e prodotti saranno accettati e quali procedure devono essere messe in atto per dimostrare coerenza. È cruciale capire quale messaggio dev’essere comunicato oggi e che tipo di storie i brand e i prodotti dovranno raccontare in futuro – per cambiare senza perdere i nostri attuali punti di forza, ma piuttosto aumentando il potenziale di crescita.

In ogni caso il settore del gioiello deve investire grandi risorse non solo pensando a quali prodotti venderà, ma anche a quali servizi ed emozioni offrire a corollario. All’acquisto di un gioiello sono legate molte sensazioni positive, che non devono più essere date per scontate, ma elaborate coscientemente e usate come leve di successo.

Come produttori e venditori di gioielli, dobbiamo chiederci: quali esperienze positive possiamo evocare o creare? Per chi? Dobbiamo capire cosa vuol dire quando diciamo che i nostri gioielli rappresenteranno un bene prezioso per una sposa o una dichiarazione di stile per chi li indossa. Cosa serve per essere notati e scelti con l’aiuto di un gioielliere di famiglia, o proposti da un brand riconosciuto. Come i metalli preziosi possono diventare accessori di lusso, dispositivi di comunicazione personale o apparecchiature medicali, emblemi religiosi o status symbol; e in che modo infondono sicurezza e felicità.

Il ruolo dell’alta gioielleria è intimamente connesso con la natura umana, e continuerà a esserlo finché saprà vestire le forme, i simboli e le funzioni che i clienti ricercano.

Gli elementi positivi che l’alta gioielleria sa suscitare nel pubblico sono una carta vincente in termini di competitività, e per questo devono essere gestiti e comunicati con sapienza. Rappresentano le solide fondamenta che ci guideranno nel prossimo decennio, aiutandoci a costruire una straordinaria personalità imprenditoriale.


Continue reading

Macroeconomic scenario for the jewellery sector

Macroeconomic scenario for the jewellery sector

a speech by Stefania Trenti

The Italian jewellery sector in 2019

Positive turnover and production also in 2019

  • According to ISTAT data, production in the jewellery and bijoux sector recorded yet another considerable increase in the first 10 months of 2019: +19.5%, for the third year running. 
  • Turnover also increased considerably: +11.4% between January and October 2019. Turnover increased for the tenth year running.

 

Evolution in turnover and production in the jewellery sector (var.%)

Jewellery sector: ATECO code 32.1
*2018: January – November
Source: Intesa Sanpaolo,
Istat data processing

Price of gold is increasing

As of the month of May, considerable global economic uncertainty led to a significant increase in the price of gold which quickly exceeded 1,500 dollars an ounce between August and September. It then continued to stand at higher levels than the mean value in 2018.
On average in 2019, the price of gold increased by 15.9% in Euros and 9.7% in dollars. 

Monthly gold prices

Source: Intesa Sanpaolo processing on LME data

…with negative effects on global demand

Global demand for gold jewellery reacted rapidly to the new price scenario, recording a significant drop in the third quarter (-15.6%), particularly in two main markets (China and India) and in the Middle East.

Global demand for gold jewellery: trend var.% (tons)

Global demand for gold jewellery: trend var.% by nation

Source: Intesa Sanpaolo on World Gold Council data – Gold Demand Trends

Excellent performances for Italian exports

In the first nine months of 2019, gold jewellery exports grew by 12.1% in quantity and by 8.8% in value in Euros.

Evolution in gold jewellery exports (trend var.%)

* Codes HS 711319 for gold and other precious materials Source: Intesa Sanpaolo, Istat data processing

with widespread positive results on (almost) all markets

Evolution in Italian gold jewellery exports (trend var.%)

Codes HS 711319 for gold and other precious materials
Source: Intesa Sanpaolo, Istat data processing

 

…and districts

Provincial export figures are only available on a more aggregate level (including costume jewellery) and only in value (not in quantity).
All the districts registered positive development, with the best results in Arezzo. 

Italian jewellery and bijoux* in 2019 (var.%)
*Code 32.1 Source: ISTAT data processing

 

The success of luxury towed by Switzerland, France and Italy

Global gold jewellery export rates* (%)
N.B. Net of flows to and from the United Arab Emirates and between China and Hong Kong
*Code 711319 Source: processing on UNCTAD Comtrade data

 

Excellent results in the USA

USA gold jewellery import rates* (%)
*Code 711319 Source: processing on US Trade data

The prospects for the next few months

Global trade picking up but trends showing modest growth

Variations are calculated on the CPB monthly world trade index. The shaded area shows forecasts. Source: Intesa Sanpaolo data processing

Forecasts for 2021

  • Slight recovery in the first six months of 2020 but annual figure lower than 2019 due to a disadvantageous towing effect.
  • A slight acceleration (of annual data) expected in 2021, also due to trade agreements.

GDP growth forecasts

Source: Refinitiv-Datastream and Intesa Sanpaolo data processing

From Asia, the first signs of cycle stabilization

The OECD forecast indicator for China confirms the turnaround

Source: OECD

Global SME manufacturing benefits from the recovery of emerging countries

Source: IHS Markit

USA cycle: controlled slowdown 

Growth towards potential

Source: Refinitiv-Datastream

Manufacturing heading towards stabilization

Source: Refinitiv-Datastream

Consumers are optimistic

Growth in consumption sustained by solid ready income dynamics

Source: Refinitiv Datastream

Families are very optimistic

Source: Refinitiv Datastream

The employment market is the power towed by consumption: unemployment at its minimum since 1969

The unemployment rate is at a minimum since the end of 1969…

Source: Refinitiv Datastream

…with salary dynamics speeding up

Source: Refinitiv Datastream

Family budgets are in order at last

Net wealth in constant growth and savings rates at the levels of the ‘90s

Source: Refinitiv Datastream

Families have reduced their debts but companies and the public sector have not

Source: Refinitiv Datastream

Euro area: internal demand sustained by real incomes and tax policies

Salary and employment growth supports incomes and consumption

Source: Eurostat and Intesa Sanpaolo projections

Correct primary balance for the cycle: 2020 budgets show a modest slowdown (0.3% at the Eurozone level)

Source: European Commission

 

Foreign demand more favourable in 2020

In the Euro area, foreign demand should partially recover over the next few quarters

Source: Intesa Sanpaolo estimates and Oxford Economics

Italy: still modest growth

  • In 2020, we expect a slight acceleration to 0.3% (0.4% incorrect for working days) from 0.2% in 2019.
  • A growth of 0.5% expected in 2021.

GDP increasing in the last few quarters despite a drop in industrial activity

Source: Refinitiv-Datastream, Istat and Intesa Sanpaolo processing

Budget law: resources destined for VAT blockage

The latest modifications have seen an easing and deferral of the plastic tax until July, a postponement of the sugar tax until October and a substantial zeroing of the squeeze on company cars. The manoeuvre has risen to 32 billion.

Interventions (impact in billions on 2020)

Coverage (impact in billions on 2020)

Note: effect on net debt in billions
Source: Intesa Sanpaolo processing on DPB 2020

Steady consumption thanks to good ready income dynamics

The various GDP components contribution to growth

Source: Refinitiv-Datastream, Istat and Intesa Sanpaolo processing

Growth can begin again in the medium term

The drop in interest rates leads to savings for the State and a boost in GDP growth

The re-acceleration of monetary aggregates (whose turnaround has always preceded that of the cycle) is a hopeful sign of a future growth in GDP in the medium term

Note: cumulated effects on the GDP of a 100 base-point drop in returns on Government bonds in the medium to long term (more or less in line with that registered in the last 6 months) (% deviation from the baseline) and on PA expenditure due to interests (in % of GDP).

Source: Banca d’Italia, MEF, Intesa Sanpaolo processing

Precious material prices  

Geopolitical uncertainty should continue in 2020 to support the price of gold which, in our expectations, should continue on a consolidation course, remaining within the mean in 2020 at around 1,500$/troy ounce, with a potential risk of increase deriving from ample liquidity on the markets and expansive monetary policies in all areas.

Price of gold ($/troy ounce)

Source: processing on LME data

Euro in slight improvement against the USD within a 12-month horizon

Source: Intesa Sanpaolo

Important Information

The economists drafting this report state that the opinions, forecasts, and estimates contained herein are the result of independent and subjective evaluation of the data and information obtained and no part of their compensation has been, is, or will be directly or indirectly linked to the views expressed.

This report has been produced by Intesa Sanpaolo S.p.A. The information contained herein has been obtained from sources that Intesa Sanpaolo S.p.A. believes to be reliable, but it is not necessarily complete and its accuracy can in no way be guaranteed. This report has been prepared solely for information and illustrative purposes and is not intended in any way as an offer to enter into a contract or solicit the purchase or sale of any financial product. This report may only be reproduced in whole or in part citing the name Intesa Sanpaolo S.p.A.

This report is not meant as a substitute for the personal judgment of the parties to whom it is addressed. Intesa Sanpaolo S.p.A., its subsidiaries, and/or any other party affiliated with it may act upon or make use of any of the foregoing material and/or any of the information upon which it is based prior to its publication and release to its customers.

DOWNLOAD PDF


Continue reading

The finishing of accessories: a must in the fashion industry

The finishing of accessories: a must in the fashion industry

a speech by Giulio Bevilacqua

Fashion and the electroplating business. Two apparently distant worlds linked by a technical dialogue that aims at getting things done: fashion brands on the one hand, and finishing “suppliers” on the other. The challenge: to build a business meeting point between strategic sectors that are tendentially little inclined to cross-contaminate and communicate in order to create a new way of thinking about luxury finishings.

A dialogue which inquisitive observation, together with 50 years’ experience, has led to three main aspects.

Aesthetics and fashion, or rather, linking electroplating finishing to the aesthetic value of the finished product. In the past, fashion, leather and footwear accessories were merely thought of as functional elements. Now, also due to the technical finishing skills, they are necessary and indispensable components, often even a distinctive element.

But how is it done? By studying the balance between shape, volume and finishing; by constant dialogue with the clientele; by analysing the input of the people employed in production and all by really listening closely to the surrounding world.

Research and innovation which means putting the experience gained and consolidated in the jewellery world with the biggest luxury brands at the disposal of the fashion supply chain. This translates into a constant experimentation of new processing techniques and research into global trends. One cannot stop at producing finishings with maniacal skill; the commitment, in any sector, is to be one step ahead in order to be able to offer the customers unique and distinctive fashion solutions.

Galvanic plating and sustainability… not a contradiction in terms but a feasible alliance. In times gone by, deciding the company’s environmental sustainability would not have been an option. On the contrary, the fact that it should develop and grow hand in hand with the company has turned out to be a natural choice, certainly not one dictated by legal obligations that did not exist at that time. Changing the idea, not only in the facts, but also in the collective imagination, that an electroplating company could be a sustainable company was a challenge that has become a concrete fact. Over the years, processing techniques, attention to the environmental context in the broad sense, as well as the more fragile contexts of the surrounding territory, have led to certifications, awards and recognitions that certify a virtuous “best practice” route at an organizational, managerial and production level in terms of sustainability.

These are the three pieces of a complex and articulate puzzle in which the various souls of savoir faire converge. A know-how that passionately moves towards creating and offering the fashion supply chain a replicable, recognized and recognizable product in processing, design, relations and service terms.

DOWNLOAD PDF


Continue reading

Galvanica per il settore moda: un caso studio

Galvanica per il settore moda: un caso studio

una relazione di Giulio Bevilacqua

Moda e azienda galvanica. Apparentemente due mondi lontani legati da un dialogo tecnico del fare: da un lato i brand della moda dall’altro i “fornitori” di finiture. La sfida: costruire un incontro d’impresa tra settori strategici poco inclini alla contaminazione e al confronto per creare un nuovo modello di intendere la finitura nel contesto del lusso.

Un dialogo che un’osservazione curiosa, unita ad un’esperienza di 50 anni, permette di ricondurre a tre principali aspetti.

Estetica e moda, ovvero legare anche la finitura galvanica al valore estetico del prodotto finito; l’accessorio della moda, della pelletteria e della calzatura, in passato considerato mero elemento funzionale assurge oggi, anche grazie all’abilità tecnica della finitura, a componente necessaria e imprescindibile, a volte esso stesso elemento distintivo.

Ma come fare? Studio degli equilibri tra forma, volume e finitura; dialogo costante con la clientela; analisi degli input provenienti dal personale impegnato nella produzione, il tutto permeato da un ascolto autentico e profondo del mondo circostante.

Ricerca e innovazione che significa mettere al servizio della filiera della moda un’esperienza nata con il mondo orafo e consolidatasi successivamente con i maggiori brand del lusso. Ciò si traduce in una sperimentazione continua di nuove tecniche di lavorazione e di studio delle tendenze a livello globale. Non ci si deve accontentare di eseguire con abilità maniacale una finitura; l’impegno, in qualsiasi settore, è giocare d’anticipo per proporre soluzioni-moda uniche ed identitarie per i clienti.

Galvanica e sostenibilità… non un ossimoro ma un’alleanza possibile. In tempi non sospetti decidere che la sostenibilità ambientale dell’azienda non sarebbe stata un optional, al contrario, che doveva svilupparsi e crescere di pari passo con essa, si è rivelata una scelta naturale, sicuramente non dettata da obblighi normativi allora inesistenti. Modificare, non soltanto nei fatti ma soprattutto nell’immaginario collettivo, l’idea che un’azienda galvanica potesse essere un’azienda sostenibile è stata una sfida che si è tradotta in azioni concrete: negli anni le tecniche di lavorazione, l’attenzione al contesto ambientale in senso ampio, così come a quelli più fragili presenti nel territorio che ci circonda, hanno portato a certificazioni, premi e riconoscimenti che attestano un percorso virtuoso di “best practice” a livello organizzativo, gestionale, produttivo, nell’ambito della sostenibilità.

Sono questi tre tasselli di un puzzle complesso e articolato in cui convergono le varie anime di un saper fare che si muove e si appassiona per creare e offrire alla filiera della moda un prodotto replicabile, riconosciuto e riconoscibile in termini di lavorazioni, design, relazioni, servizio.

Scarica la presentazione


Continue reading

Simulating the casting process for jewelry

Simulating the casting process for jewelry

a speech by Vera Benincasa

Simulating processes has been mandatory in many companies from the most diverse manufacturing sectors for years. One only need think of the aviation industry where companies must be absolutely certain that the components produced have no micro-structural defects whatsoever and where a rejected part cannot be re-processed. 
Casting process simulation identifies areas subject to defects and helps to design the casting system in the most efficient manner. It also allows the causes of any inefficiency to be analysed and to understand how to increase productivity.
This system has been used for over twenty years in smelting processes in the automotive and aerospace industries and for some years now, it has also been adopted by our sector. 
In the jewellery world, lost wax micro-casting has always been linked to operator experience or trial and error. Nowadays, simulation software can optimize the entire process starting from the very first prototype design to the mass production of jewellery items. 


The micro-casting process is one of the oldest methods for producing many types of article.
Different peoples and cultures used this process to produce tools, objects and statues in bronze. One very famous example is the Bronze Riace Warriors that were salvaged from the sea in 1907, 2500 years after they were made in Greece in the sixth century BC.
The process developed over the centuries, evolving from a simple artistic method and demonstrating exceptional versatility.
Micro-casting, or lost wax casting, has been used for many years in the automotive and aerospace technology sectors, however, this process, although highly reliable, still presents defects.  

In the jewellery world, the most common and problematic defects are:
– incomplete filling of the cast
– porosity by retraction.
While cases of the first type of defect are limited to specific kinds of production (filigree, particular alloys, complex geometries…), the second can be found in all micro-cast products because it is intrinsically linked to the solidification process of the metal alloy.

It is on this latter category of defect that we will be focusing our attention.
Up until a few decades ago, “Trial and Error” was the obligatory method of trying to solve the problem of porosity by retraction.
With practice and experience, the aim was to minimize and hide the defect.
In order to obtain a commendable result, modest amounts of time and metal needed to be invested.
Simulating the process in a virtual environment minimizes this investment and achieves a better result in less time.

Nowadays, simulation software has reached a high level of precision so that excellent results can be obtained in terms of product development times and the production process can be improved.
The use of casting process simulation software in the jewellery sector is relatively recent although it is constantly on the increase due to the growing request for quality on the part of the big jewellery companies.

Simulation software works when there is a deep knowledge of the entire process. For this reason, the more it is used, the more information will be available to configure the process and the more the results provided by the software will correspond to industrial needs.

The software used for this study is produced by the French ESI Group and is called ProCAST.
It is an advanced and complete tool and has been on the market for over 20 years. It is widely used in various industrial fields. The software is based on finite element technology and is able to simulate a long list of real processes. This study focuses on the module for simulating the lost wax casting process.

 

Figure 1 – processes that can be simulated with Procast

A knowledge of metallurgy and the production process is necessary to be able to use the software to its best advantage. With the help of the SW, the process technologist can work out the best conditions for a reliable and robust micro-casting process.

The software consists of the following environments:
– MESH
– CAST
– VISUAL

MESH is the environment in which our object, starting from the CAD model, is broken down into minor elements (mesh) that the then software uses to understand the points on which to calculate the thermal exchange and solidification equations. The operator decides on the size of the mesh in accordance with various factors. Besides the object of our study, the mould into which we will be casting the metal in order to accurately simulate our process must also be designed and “meshed”.

CAST is the environment where all the parameters to be taken into account in our process are inserted: type of alloy, process temperature, pressure of the metal as it goes into the mould, entry section, thermal exchange, radiation phenomena, etc…

VISUAL is the ideal environment for observing and measuring the simulation results and, depending on what is being analysed and measured, different physical measurements can be viewed (temperature range, solid fraction, voids, porosity, flow speed, etc…)
With the help of Procast, it is extremely easy to foresee where the defects of a particular micro-cast will be and how large these defects effectively are.

Thanks to the software, we can quickly and fully investigate the porosity by retraction defect.

The problem of porosity by retraction is strictly correlated to the solidification concept. In fact, porosity by retraction occurs when the metal status turns from liquid to solid: the metal undergoes a volumetric contraction and, where the volume retracts, dendritic structures, which can become larger as the alloy hardens, can emerge on the surfaces.

Figure 2 – Diagram showing volume according to temperature

Dendrites are tree-like structures that form during metal alloy solidification. The metal forms crystals that grow and solidify in the most energetically favourable crystallographic directions. If cooling is fast, dendrite growth is limited. On the other hand, if cooling is slow, the dendrites will be larger and, in the worst scenarios, visible to the naked eye in the volumetric retraction zone.

Figure 3 – Diagram of the structure of an alloy’s dendritic growth

Volumetric contraction is intrinsic to the solidification process and therefore, porosity by retraction is an inevitable defect in the casting process.
Porosity by retraction cannot be eliminated but it can be conveyed to strategic points by encouraging directional solidification.

When a metal alloy solidifies, the last volume to do so, that is, the one that stays “hot” the longest, will be the part that contains porosity by retraction.
In designing a casting system, it is therefore essential to study the thermo-dynamic factors that lead to controlled solidification: the casting channels, feeders and risers are to be designed and sized so as to be able to correctly feed the piece being produced and, at the same time, “keep” retraction out of the areas of interest.

To study the solidification of micro-cast objects, it is important to consider the cooling module.
The cooling module, or thermal module, is given by the ratio between mass and surface of an object M=V/S.
Starting with volume, if the surface of the object is greater, solidification time will drop drastically. Solidification time depends on M and also on the type of material and the object’s geometry.
Studying solidification time is essential for shifting the direction of solidification. 

Let’s take a very simple object, such as a wedding band, for example.
Being circular and symmetrical, the point in which we put the feeder is of no importance. What is important, however, is the feeder’s section and geometry.
Below is an example of the solidification simulations of the same ring with three different feeders in ascending section size.

Figure 4 – solidification analysis of the wedding band in the three study cases

As can be seen in the picture above, the feeder with the largest section tapered towards the metal entry section is the one that fills the cast and directs ring solidification correctly. 

As further evidence of the correctness of feeder 3’s design, we can see, again by simulation, a reduction in porosity (in purple) in the diagrams below.

Figure 5 – porosity in the rings using feeders with sections of ascending size

Now let’s look at another simple ring geometry, but this time with a variable section.

Figure 6 – ring with variable section

In this case, since the geometry is not symmetrical, the point at which we feed the ring is of fundamental importance. Figure 7 below shows the progress of solidification based on the point chosen for positioning the cast feed.

Figure 7 – ring solidification with feeder in point A or point B

Solidification observed in the previous figure leads to porosity in the areas highlighted in figure 8.

Figure 8 – evidence of porosity by retraction found after ring simulation with feeding in point A or point B

The results can be verified by observing the actual components cast. When using simulation software, it is extremely important to calibrate the reliability of the software with one’s own casting process.  
The photographs below show the surfaces of the ring analysed and cast with the two different feeder positionings:

Figure 9 – porosity visible on the raw cast ring.
On the left, ring fed from position A, on the right, ring fed from position B

Figure 10 – evidence of a macroscopic pore on the surface of the ring fed from position B

Figure 11 – two polished wedding bands.
On the right, porosity by retraction on the ring fed from position B

Similarly, taking a larger object, we can see that the same directional solidification rules can be applied in this case too.
The figure being examined is a “C” which could be used to make half a bracelet.

Figure 12 – “C-shape” for producing bracelets

In the first example, let’s consider the item with the same type of feed but cast with different parameters. The response variation to the change in temperature, both in the mould and in casting, is particularly notable.

Figure 13- solidification – on the left, Tcil:Tc1 Tfus:Tf1; on the right, Tcil:Tc2 Tfus:Tf2
(with Tc2>Tc1 and Tf2>Tf1)

Figure 14 – porosity – on the left, Tcil:Tc1 Tfus:Tf1; on the right, Tcil:Tc2 Tfus:Tf2
(with Tc2>Tc1 and Tf2>Tf1)

 

As can be seen from the diagrams, as the temperature rises, the size of the porosities decreases. This happens because the metal is given more time to solidify in a directional manner. In this case, however, only modifying the process parameters does not solve the problem at the root.
It is therefore necessary to modify the feed. Let’s look at two different feeds.

Figure 15 – feed A – feed B

The figure below shows the simulation of the solidification process in both cases.

Figure 16 – Bracelet solidification with feed position A (left) and feed position B (right)

Analysing the figure on the left, it can be noted that the six feed spokes are solidifying before the bracelet itself has solidified (as in the previous example), thus “blocking” the way for the metal to continue to feed the object correctly. In the figure on the right, however, we can see how the four spokes are feeding the piece well, resulting in a directional solidification towards the heart of the column.

Figure 17 – porosity analysis in the two feeding positions, A and B

Evidence of the efficiency of type B feeding position can be given by analysing the porosity.
In figure 16, it can be noted how, in case B, the object has no porosity, while in case A, there are six porosity nuclei exactly where the metal took longer to cool.

The accurateness of these simulations is shown in the photographs below.

 

Figure 18 – raw cast bracelets: on the left, feeding position A, on the right, feeding position B

Figure 19 – detail that already shows porosity by retraction on the raw bracelet using feeding position A

Figure 19 – on the left, bracelet fed from position A, on the right, from position B

The analysis of these simple geometries demonstrates the validity of simulation. The software can precisely predict which areas will be affected by defects and their size.
The micro-casting simulation process is a useful tool for the technologist who cannot totally eliminate the “Trial and Error” process but can limit it in the virtual simulation environment, thus reducing product industrialization times and costs.

Table 1 – advantages of simulation calculated on actual study cases

The fundamental tool for using casting simulation software is CAD 3D modelling.
In fact, as already mentioned, in order to be able to simulate the casting process, it is absolutely necessary to start from a 3D model of both the casting system we want to simulate and the mould in which we will be casting the metal.
The more accurate the initial model is, the more accurate the simulation results will be.
Moreover, CAD modelling offers the advantage of being able to rapidly design and simulate various types of feeding points and casting systems.
By simulating different feeding points, we can find the best one for our item.
By carrying out casting simulation at the beginning of the design process, it would immediately be possible to identify errors in the design and intervene by modifying the model’s geometry.   
If modifying the item is not possible, then acting on the other parameters (feeding, process parameters, etc..) will become necessary.

Once the importance of simulating each individual detail has been understood, new possibilities for more complex casting systems can be explored. By simulating an entire casting tree, for example, it is possible to analyse the entire process and optimize it.

Figure 20 – cast simulation of a tree

In conclusion, introducing this technology into the jewellery supply chain is undoubtedly helpful for moving towards better production performances and benefits companies that want to use additional forces and means in their production processes.

Resources and study are needed to take best advantage of this technology. Nevertheless, the benefits resulting from its usage (savings in time and means as well as the effectiveness of the results obtained) eliminate every uncertainty. In time, this will be the only way to proceed in jewellery industrialization, as has already happened in other production sectors.


Continue reading

Simulare il processo di colata per oreficeria

Simulare il processo di colata per oreficeria

una relazione di Vera Benincasa

Simulare i processi è da anni obbligo in molte realtà dei più disparati settori produttivi, basti pensare al settore aeronautico dove è necessario essere certi che i componenti prodotti siano esenti da difettosità microstrutturali anche minime e dove un pezzo di scarto non può essere rilavorato.
La simulazione dei processi di colata consente di identificare le aree soggette a difetti e aiuta a progettare il sistema di colata nel modo più efficiente, consente di analizzare le cause di inefficienza e di comprendere come aumentare la produttività.
Questo sistema è utilizzato da più di vent’ anni nei processi di fonderia legati al settore automotive e aerospace, ma da qualche anno si è avvicinata anche al nostro settore.
Nel mondo orafo la microfusione a cera persa è sempre stata legata all’esperienza degli operatori oppure ad operazioni di trial and error.
Oggi, con i software di simulazione, si può ottimizzare tutto il processo a partire dal primissimo disegno del prototipo fino alla produzione in massa dei gioielli.


Il processo di microfusione è uno dei più antichi metodi per la produzione di manufatti di svariato genere.
Popoli e culture diverse hanno impiegato questo processo per la produzione di strumenti, oggetti e statue in bronzo. Un esempio famosissimo sono i bronzi di Riace, ritrovati in mare nel 1907 dopo 2500 anni dalla loro produzione nella Grecia del VI secolo a.C.
Nel corso dei secoli, il processo si sviluppato, evolvendo da semplice metodo artistici e dimostrando una eccezionale versatilità.
La microfusione, o fusione a cera persa, viene utilizzata da tantissimi anni nei settori tecnologici dell’ automotive e dell’ aerospace tuttavia tale processo, benché molto affidabile, non è esente da difetti.

Nel mondo del gioiello i difetti più diffusi e più problematici sono sicuramente:
– mancato riempimento del getto
– porosità da ritiro
Mentre per la prima tipologia di difettosità le casistiche sono limitate a produzioni specifiche (filigrane, leghe particolari, geometrie complesse, ..) la seconda è riscontrabile sul 100% dei prodotti microfusi poiché intrinsecamente legato al processo di solidificazione delle leghe metalliche.

È su quest’ultima categoria di difettosità che focalizzeremo la nostra attenzione.
Fino a pochi decenni fa, per affrontare la problematica delle porosità da ritiro era obbligatorio passare attraverso processi di “Trial and Error”.
Con pratica ed esperienza si puntava a minimizzare ed occultare il difetto.
Per arrivare ad un risultato apprezzabile era necessario investire modeste quantità di tempo e metallo.
Simulare il processo in un ambiente virtuale, consente di minimizzare questo investimento, giungendo in tempi ridotti ad un risultato migliore.

Oggi i software di simulazione sono giunti ad un alto livello di precisione consentendo di ottenere ottimi risultati termini di tempo di sviluppo del prodotto e consentendo di migliorare il processo produttivo.
L’utilizzo del software di simulazione del processo di colata nel settore orafo è relativamente recente ma in costante espansione a causa di una crescente richiesta di qualità da parte delle grandi case orafe.

I software di simulazione funzionano grazie alla conoscenza approfondita dell’intero processo, per questo motivo maggiore è il loro utilizzo, maggiori informazioni si hanno a disposizione per configurare il processo, maggiore sarà la rispondenza dei riscontri forniti dal SW alla realtà industriale.

Il software utilizzato per questo studio è della casa francese ESI Group e si chiama ProCAST.
Si tratta di uno strumento avanzato e completo, sul mercato da oltre 20 anni ed ampiamente utilizzato in diversi campi industriali. Il software si basa sulla tecnologia agli elementi finiti ed è in grado di simulare un lungo elenco di processi reali. Nel caso in studio l’attenzione è focalizzata sul modulo per la simulazione del processo di colata a cera persa.

Figura 1 – processi simulabili con Procast

Per poter utilizzare al meglio il software è necessario avere delle conoscenze di metallurgia e del processo produttivo. Il tecnologo di processo può con l’ausilio del SW studiare le migliori condizioni affinché il processo di microfusione sia affidabile e robusto.

Il software consta dei seguenti ambienti:
– MESH
– CAST
– VISUAL

MESH è l’ambiente all’interno del quale il nostro oggetto, a partire dal modello CAD, viene scomposto in elementi minori (mesh) che il software usa per sapere i punti ove calcolare le equazioni di scambio termico e di solidificazione. La dimensione delle mesh è scelta dall’operatore in base a diversi fattori. Oltre all’oggetto del nostro studio, bisogna disegnare e “meshare” anche lo stampo all’interno del quale andremo a colare il metallo per poter simulare in maniera accurata il nostro processo.

CAST è l’ambiente dove inserire tutti i parametri di cui tener conto nel nostro processo: tipo di lega, tipo di stampo, temperature di processo, pressione di ingresso del metallo nello stampo, sezione di ingresso, scambio termico, fenomeni di irraggiamento, etc..

VISUAL è l’ambiente idoneo all’osservazione e alla misurazione dei risultati della simulazione e in base a ciò che si vuole analizzare e misurare si possono visualizzare grandezze fisiche differenti (range di temperature, frazione solida, vuoti, porosità, velocità di flusso, ecc..)

Con l’ausilio di Procast è molto semplice prevedere dove saranno i difetti sul particolare microfuso e quali sono le entità effettive di questi difetti.

Grazie al software possiamo sviscerare in poco tempo il difetto della porosità da ritiro.

Il problema della porosità da ritiro è strettamente correlato al concetto di solidificazione. La porosità da ritiro, infatti, viene a crearsi quando il metallo passa dallo stato liquido allo stato solido: il metallo subisce una contrazione volumetrica e nella zona del ritiro di volume possono affiorare in superficie le strutture dendritiche che si accrescono in fase di solidificazione della lega.

Figura 2 – diagramma Volume in funzione della temperatura

Le dendriti sono strutture ad albero che si formano durante la solidificazione delle leghe metalliche. Il metallo forma cristalli che si accrescono e solidificano nelle direzioni cristallografiche energeticamente più favorevoli. Con un raffreddamento rapido l’accrescimento delle dendriti è limitato. Mentre con un raffreddamento lento si ottengono delle dendriti di dimensioni maggiori, nei casi peggiori visibili a occhio nudo nella zona del ritiro volumetrico.

Figura 3 – Rappresentazione struttura di accrescimento dendritica in una lega

La contrazione volumetrica è intrinseca al processo di solidificazione e, quindi, la porosità da ritiro è una difettosità inevitabile nel processo di fusione.
La porosità da ritiro non può essere eliminata, ma può essere veicolata in punti strategici promuovendo la solidificazione direzionale.

Nella solidificazione di una lega metallica, l’ultimo volume a solidificare, ovvero quello che rimane “caldo” per più tempo, sarà quello che conterrà le porosità da ritiro.
Nella progettazione di un sistema di colata è fondamentale, quindi, lo studio dei fattori termodinamici che portano ad una solidificazione controllata: i canali di colata, gli alimentatori e le materozze vanno studiati e dimensionati in maniera tale da riuscire ad alimentare correttamente il pezzo da realizzare e allo stesso tempo “trattenere” il ritiro fuori dalle zone di interesse.

Per studiare la solidificazione degli oggetti microfusi è importante considerare il modulo di raffreddamento.
Il modulo di raffreddamento, o modulo termico, è dato da rapporto tra massa e superficie di un oggetto M=V/S. A parità di volume, se la superficie dell’oggetto è maggiore, il tempo di solidificazione diminuisce drasticamente. Il tempo di solidificazione è una funzione di M, e dipende anche dal tipo di materiale e dalla geometria dell’oggetto. Studiare il tempo di solidificazione è fondamentale per veicolare la direzione di solidificazione.

Prendiamo ad esempio un oggetto molto semplice, come può essere una fede.
Avendo una geometria circolare e simmetrica il punto in cui andremo a mettere l’alimentatore non ha importanza. Ha importanza, però, la sezione e la geometria di quest’ultimo. Di seguito sono riportati come esempio le simulazioni della solidificazione della stessa fede ma con tre alimentatori a sezione crescente.

Figura 4 – analisi solidificazione della fede nei tre casi studio

Come si può vedere nell’ultima immagine, l’alimentatore con sezione maggiore e rastremato verso la sezione di imbocco del metallo è quello che consente il corretto riempimento del getto e la solidificazione direzionale della fede.

A riprova della correttezza della progettazione dell’alimentatore 3 possiamo vedere, sempre dalla simulazione, la riduzione di porosità (in viola) nell’ultima immagine.

Figura 5 – porosità nelle fedi con alimentatore a sezione crescente

Prendiamo ora ad esempio un’altra geometria semplice di un anello, ma stavolta con sezione variabile.

Figura 6 – anello a sezione variabile

In questo caso, essendo la geometria non simmetrica, il punto in cui andremo ad alimentare l’anello è di fondamentale importanza. Di seguito vediamo nella fig 5 l’andamento della solidificazione a seconda del punto dove si è scelto di mettere l’alimentazione del getto.

Figura 7 – solidificazione dell’anello con alimentazione in punto A o in punto B

La solidificazione osservata nella figura precedente, conduce alla presenza di porosità nelle zone evidenziate nella figura 6.

Figura 8 – evidenza delle porosità da ritiro rilevate dopo simulazione anello con alimentazione in punto A o in punto B

I risultati possono essere verificati osservando i componenti fusi. E’ molto importante, nell’utilizzo dei software di simulazione, tarare l’affidabilità del software con il proprio processo di fusione.
Di seguito sono riportate le immagini delle superfici dell’anello analizzato e fuso con i due diversi posizionamenti dell’alimentatore:

Figura 9 – porosità visibile su anello grezzo di fusione. A sx anello con alimentazione A e a dx anello con alimentazione B

Figura 10 – evidenza di un poro macroscopico sulla superficie dell’anello con alimentazione B

Figura 11 – due fedi lucidate. In evidenza sulla destra porosità da ritiro su pezzo fuso con alimentazione B

Allo stesso modo prendendo in esame un oggetto di dimensioni maggiori, possiamo vedere che le stesse regole della solidificazione direzionale sono applicabili anche in questo caso.
La figura in esame è una “C” che potrebbe essere utilizzata per realizzare la metà di un bracciale.

Figura 12 – geometria a “C” per realizzazione bracciali

Nel primo esempio prendiamo in considerazione il pezzo con la stessa tipologia di alimentazione ma fuso con parametri diversi. In particolare si può notare la variazione di risposta al variare della temperatura, sia di stampo che di fusione.

Figura 13- solidificazione – a sx Tcil:Tc1 Tfus:Tf1 ; a dx Tcil:Tc2 Tfus:Tf2 (con Tc2>Tc1 e Tf2>Tf1)

Figura 14 – porosità – a sx Tcil:Tc1 Tfus:Tf1 ; a dx Tcil:Tc2 Tfus:Tf2 (con Tc2>Tc1 e Tf2>Tf1)

Come si può notare dalle immagini, al crescere della temperatura le dimensioni delle porosità decrescono. Questo avviene perché si da più tempo al metallo per solidificare in maniera direzionale. In questo caso, tuttavia, il solo variare dei parametri di processo non riesce a risolvere il problema alla radice.
È necessario, quindi, modificare l’alimentazione. Prendiamo in esame due tipologie di alimentazioni.

Figura 15 – alimentazione A – alimentazione B

Di seguito possiamo vedere la simulazione del processo di solidificazione in entrambi casi.

Figura 16 – solidificazione bracciale nel caso di alimentazione A (sx) o B (dx)

Analizzando la figura a sinistra si può notare che i sei raggi di alimentazione stanno solidificando prima che il bracciale sia esso stesso solidificato (come nell’esempio precedente), “chiudendo” le strade al metallo per continuare ad alimentare correttamente il pezzo. Nella figura a destra, invece, si nota come i quattro raggi vadano ad alimentare bene il pazzo consentendo una solidificazione direzionale verso il cuore del piantone.

Figura 17 – analisi delle porosità nei due casi di alimentazione A o B

La riprova dell’efficienza dell’alimentazione tipo B è data dall’analisi delle porosità.
In figura 16 si può notare come nel caso B il pezzo sia esente da porosità, mentre nel caso A si riscontrino sei nuclei di porosità da ritiro esattamente dove il metallo ha raffreddato per ultimo sul pezzo.

Le evidenze di queste simulazioni sono riportate nelle immagini seguenti.

 

Figura 18 – bracciali grezzi di fusione: a sx alimentazione A, a dx alimentazione B

Figura 19 – particolare che mostra porosità da ritiro già dal grezzo sul bracciale con alimentazione A

Figura 19 – a sx bracciale con alimentazione A a dx alimentazione B

L’analisi di queste geometrie semplici dimostra la validità della simulazione. Il software è in grado di prevedere con precisione quali saranno le zone affette da difetti e l’entità di questi ultimi.
La simulazione del processo di microfusione è uno strumento utile al tecnologo che non elimina del tutto il processo di “Trial and Error” ma lo limita all’ambiente virtuale della simulazione abbattendo i tempi e i costi dell’industrializzazione del prodotto.

Tabella 1 – vantaggi simulazione calcolati su casi reali di studio

Lo strumento fondamentale per l’utilizzo del software di simulazione di colata è la modellazione CAD 3D.
Come si è già detto, infatti, per poter simulare il processo di colata è indispensabile partire da un modello 3D, sia del sistema di colata che vogliamo simulare sia dello stampo all’interno del quale andremo a colare il metallo.
Quanto più è accurato il modello di partenza, tanto più saranno accurati i risultati della simulazione.
La modellazione CAD offre anche il vantaggio di poter disegnare e simulare in tempi rapidi diverse tipologie di alimentazioni e di sistemi di colata.
Simulando diverse alimentazioni potremmo stabilire la più idonea al nostro particolare.
Prevedendo la simulazione di colata all’inizio del processo di progettazione, sarebbe possibile individuare da subito eventuali errori di design e intervenire modificando la geometria del modello.
Laddove non è possibile modificare il design del pezzo, si dovrà forzatamente andare ad agire su altri parametri (alimentazioni, parametri di processo, etc..) 

Una volta capita l’importanza della simulazione sul singolo particolare, è possibile esplorare nuove possibilità per sistemi di colata complessi.
Simulare un intero albero di fusione consente, ad esempio, di analizzare il processo nel suo insieme e di ottimizzarlo.

Figura 20 -simulazione colata di un alberello

Concludendo l’introduzione di questa tecnologia nella filiera della creazione orafa è senza dubbio di aiuto alla transizione verso una produzione più performante e mette il “turbo” alle aziende che vogliono impiegare forze e mezzi per implementarla nei loro processi produttivi.

Per poter sfruttare al meglio questa tecnologia occorrono mezzi e studio, tuttavia i vantaggi risultanti dal suo utilizzo (il risparmio di tempo, mezzi e l’efficacia dei risultati ottenuti) abbattono tutte le incertezze. Nel tempo questo diventerà l’unico modo di procedere per industrializzare un manufatto orafo, così come già avviene in tutti gli altri settori di produzione.


Continue reading

Diamante sintetico: un problema commerciale per il futuro?

Diamante sintetico: un problema commerciale per il futuro?

una relazione di Antonello Donini

Stiamo parlando di DIAMANTE SINTETICO.
Carbonio (C)  cristallizzato nel sistema cubico disposto nel reticolo secondo la configurazione spaziale tetraedrica.
Come accade nel diamante naturale tale configurazione conferisce a  questo materiale proprietà che lo rendono unico nel suo genere.

Non parliamo quindi di una imitazione ma di vero e proprio diamante prodotto con metodi artificiali di sintesi fatti dall’uomo e non dalla natura.

I primi tentativi di  realizzare in laboratorio l’esatta controparte sintetica del diamante sono databili intorno alla fine del 19° secolo, ma  il primo successo storicamente documentato risale alla prima metà degli anni ’50 del 20° secolo, quando i ricercatori dell’americana General Electric hanno sintetizzato i primi piccoli cristalli di diamante.

Sempre la General Electric, circa 20 anni dopo, ha realizzato i primi diamanti sintetici aventi dimensioni sufficienti per poter avere un utilizzo come gemma, seguita negli  anni ’80 dalla giapponese Sumitomo, dalla De Beers e verso l’inizio degli anni ’90, da laboratori  russi.

Metodi di sintesi

Metodo di produzione HPHT

Il metodo si basa sulle condizioni che hanno permesso in natura la formazione del diamante ovvero alte pressioni ed alte temperature.

All’interno delle celle di reazione contenenti  cristalli-seme, una lega/soluzione metallica (ad esempio nickel e ferro) che funge da fondente/catalizzatore, il nutriente (solitamente grafite) viene esposto a condizioni di alte pressioni ed alte temperature (tra 1400 e 1600°C e tra 50 e 60 kbar) grazie a elementi riscaldanti e presse.
Il carbonio si dissolve nel fondente e si deposita quindi sui cristalli seme posti solitamente in una zona della cella con temperatura inferiore sotto forma di diamante.

Metodo HPHT  BARS

Metodo HPHT  TOROID

Metodo HPHT  CUBOID

Una importante problematica da affrontare per questo metodo di sintesi è quello di tenere lontana la presenza di azoto responsabile di una colorazione verde giallo alla bruna dei cristalli sintetizzati.
L’utilizzo di nuove leghe metalliche utilizzate come fondenti, con l’aggiunta di particolari elementi (come alluminio, cobalto o rame) che permettono di fissare l’azoto facendo in modo che non rientri nel reticolo del diamante.

Si ottengono così diamanti incolori (tipo Iia) o con lieve colorazione  bluastra per la presenza di lievissime quantità di boro (tipo IIb).

DIAMANTE SINTETICO CVD

Ha il grosso vantaggio di avvenire a basse pressioni, nell’ordine di 10-200 torr.

Nella camera viene creato un plasma che rompe la molecola di metano o altro gas contenente C.

Il carbonio si va quindi poi a depositare sotto forma di diamante su un substrato solitamente costituito da sottili semi di diamante.

Elementi utili alla identificazione

I diamanti sintetici incolori CVD sono in generale del tipo IIa ovvero composti da solo carbonio.

Per eliminare una possibile componente bruna presente nei diamanti cristallizzati con questo metodo dovuta a dislocazioni, vengono sottoposti a un post trattamento HPHT in grado di eliminarla.

Al microscopio i diamanti sintetici HPHT mostrano spesso caratteristiche figure di crescita, correlate ai settori di crescita cubici e ottaedrici.

È possibile rilevarle in corrispondenza di zonature di diversa fluorescenza o nella distribuzione del colore all’interno della pietra che segue questi settori di crescita.
Le inclusioni  caratteristiche, ma non sempre presenti, sono residui di fondente che si presentano come inclusioni nere e opache con lustro metallico.

Zonature di colore e linee di struttura in diamante sintetico  HPHT che seguono i settori di crescita

Le inclusioni  caratteristiche, ma non sempre presenti, sono residui di fondente che si presentano come inclusioni nere e opache con lustro metallico o estesi gruppi di inclusioni puntiformi (probabilmente minute particelle di fondente disperso).

Inclusioni di fondente metallico  in diamanti sintetici incolori HPHT

Esempi di inclusioni in diamante sintetico HPHT

I diamanti sintetici CVD potrebbero avere minute inclusioni scure (residui carboniosi) con aloni di tensione probabilmente generati da un post trattamento termico utilizzato per migliorare il colore delle gemme.

Esempi di inclusioni in diamanti cvd

Molti diamanti sintetici HPHT mostrano una caratteristica fluorescenza da gialla a verde giallastra agli UVL (365 nm) e agli UVC (254 nm).

Le impurità che vengono assorbite nella struttura del diamante sintetico durante la sua crescita tendono a concentrarsi ciascuna in determinati settori di crescita, ciò origina caratteristiche figure di fluorescenza, a forma di croce o ottagonali, mai viste in diamanti naturali.

Spesso, a differenza di quanto accade nei naturali, la reazione è più intensa all’onda corta che a quella lunga.

I diamanti naturali generalmente mostrano una fluorescenza più o meno marcata di colore blu (più raramente gialla e, meno comunemente ancora, verde o rosa), abbastanza uniforme e, comunque,  più marcata all’onda lunga che all’onda corta.

Effetti di luminescenza che seguono le direzioni di crescita cubo-ottaedriche in un diamante

La presenza di fosforescenza solitamente persistente (rarissima in natura e atipica nelle pietre incolori) è un buon segno identificativo.
Sono infatti i diamanti di tipo IIb estremamente rari in natura (contenenti boro) che presentano questo effetto solitamente di breve durata.

Una caratteristica particolare dei diamanti prodotti con il metodo HPHT è quello di mostrare poche o lievi birifrangenze anomale al contrario dei diamanti naturali. Nei sintetici CVD le birifrangenze anomale sono generalmente simili a quelle dei diamanti di tipo IIa naturali ovvero con una specie  di graticcio, spesso orientato secondo la direzione di deposizione dei cristalli.

Esistono però cristalli sintetici CVD di qualità “ottica” (QUINDI OTTICAMENTE PERFETTI ED OMOGENEI) privi di birifrangenze anomale.

Birifrangenze anomale in diamante sintetico HPHT. Quando presenti assumono la forma di una croce

Birifrangenze anomale in diamante sintetico CVD

Identificazione certa solo attraverso tecniche analitiche avanzate

La spettrofotometria IR (infrarosso) è un ottimo aiuto per riconoscere la tipologia del diamante ovvero per verificare la presenza o assenza di tracce di alcuni elementi fondamentali. SI hanno così potenziali informazioni per isolare tipologie di diamante che potrebbero essere compatibili con una produzione sintetica.

I Diamanti sintetici incolori sono di tipo IIa (azoto presente in quantità talmente piccola da non poter essere rilevato strumentalmente con IR), mentre quelli blu, come i loro analoghi naturali, sono di tipo IIb (presenza di boro). La presenza del tipo IIb ovvero di tracce di boro è riscontrabile spesso in moltissimi diamanti sintetici incolori. Sono stati anche visti in commercio diamanti sintetici di colore rosa dovuto ad un post trattamento per irraggiamento e successivo riscaldamento a bassa temperatura. E’ bene ricordare che le prime produzioni, proprio per la presenza di azoto prevedevano colorazioni nel giallo con diverse sfumature di bruno o bruno verdastro. Alcuni diamanti di questo tipo trattati per irraggiamento hanno assunto un vivacissimo colore rosso.

Allo spettrofotomentro UV-VIS-NIR la componente Ib presente nei diamanti sintetici giallo verdi genera un assorbimento a partire dai 500 nm verso l’ultravioletto.
Molti diamanti mostrano, una serie di assorbimenti tra 470 nm e 700 nm, dei quali il più evidente è a  658 nm. Questi picchi sono dovuti alla presenza di nickel all’interno della struttura cristallina presente nel catalizzatore.
I diamanti incolori sintetici di tipo IIa sono trasparenti sino a 270 nm.

Presenza di elementi come nickel, ferro, alluminio, cobalto, rame o gli altri metalli impiegati nella crescita, possono essere identificati mediante un’analisi chimica con fluorescenza ai raggi X (EDXRF).

Attraverso la Fotoluminescenza è possibile rilevare centri di colore diagnostici grazie alle tracce di impurità presenti   quindi riconoscere la natura sintetica.

La osservazione degli effetti di luminescenza ad uv molto corti può essere molto utile per riconoscere i diamanti sintetici.  

Quadro della situazione commerciale

I produttori di diamanti sintetico sostengono che:

I diamanti prodotti artificialmente in laboratorio hanno essenzialmente la stessa composizione chimica, struttura cristallina, proprietà ottiche e fisiche dei diamanti estratti dalle miniere: sono quindi diamanti al 100%. L’unica differenza tra i diamanti sintetici e quelli estratti è che uno è stato creato all’interno ed estratto dalla Terra e l’altro è stato creato in un laboratorio all’avanguardia.

Sono numerosi i produttori che sintetizzano diamante soprattutto per scopi industriali.

In gioielleria la dimensione delle gemme sfaccettate ha raggiunto dimensioni decisamente importanti: sono state viste gemme di oltre 10 ct. Ma la maggiore diffusione di questo prodotto si ha su gemme fino ad un max di 2,00 ct e nei lotti melèe (da meno di un punto fino a 0,25 ct).

Costante crescita e diffusione nel settore orafo dell’utilizzo di questo materiale gemmologico, trascinato dall’intensivo e sempre maggiore impiego industriale di questo materiale.
Ampiamente utilizzato negli strumenti come superabrasivi, mole, utensili da taglio, strumenti di perforazione e lucidatura, prodotti dell’industria automobilistica, medica, aerospaziale ed elettronica.

Per i costi di manifattura e per importanza di mercato fanno la parte del leone i paesi asiatici, seguiti dal nord America.

Commercialmente stanno avendo un forte spunto e diffusione soprattutto negli USA e in Giappone.

A fornire un forte discapito per chi tratta il naturale, la FTC statunitense (Federal Trade Commission, organo legislativo commerciale) ha permesso che queste sintesi potessero essere chiamate come “grown diamonds”.
Ha inoltre stabilito che il “diamante sintetico” è da considerarsi come vero e proprio “diamante” permettendo ai produttori di sintetici di commercializzare i loro prodotti come «reali» / «veri» (real diamonds).

Il resto del mondo e le norme ISO internazionali prevedono che questo materiale gemmologico debba essere chiamato, ai fini della chiarezza nei confronti del consumatore solo come  “diamante sintetico” al pari di qualsiasi altra sintesi.
Nessuna altra definizione o semplificazione è ammessa.
ISO 18323:2015

Il costo di questo materiale è attualmente inferiore al naturale di circa il 30-40% ma sono previste ulteriori diminuzioni dovute ad una sempre maggiore diffusione e alla riduzione dei costi di produzione.

I diamanti sintetici rappresentano attualmente circa Il 2% del mercato globale.
Ci si aspetta che entro il 2030 tale quota possa salire al 10%.
Per pietre con peso attorno al 0,50-1,50 ct, adatte ad un impiego come solitario ovvero per un anello da fidanzamento la quota del 7,5% potrebbero essere raggiunta già nel 2020.

Per il «melèe» si potrebbe arrivare ad una quota del 15% nei prossimi due anni.

La diffusione di questo materiale nel melèe potrebbe essere intensificata da una progressiva  scarsità di diamanti estratti in natura in quanto è attesa la chiusura della miniera di Argyle (ormai quasi esausta) che attualmente fornisce la maggior parte dei diamanti piccoli del mondo.

Difficile quindi fare oggi delle previsioni su quale sarà il reale impatto di questo materiale sul mercato dei preziosi.

Le nuove generazioni sembrano, dagli studi di marketing, positivamente favorevoli all’utilizzo di questo nuovo materiale in ornamentazione.

Il diamante sta perdendo quel fascino di pietra simbolo di rarità e amore eterno per raggiungere sempre più lo status di gemma a larga diffusione.
I consumatori iniziano  a percepire i diamanti sintetici come allettanti: è possibile avere gemme più grandi a prezzi più bassi e, soprattutto, fare un investimento «privo di sensi di colpa».
È attiva una importante operazione mediatica per pubblicizzare queste gemme come maggiormente “etiche” rispetto le naturali.
I giovani, essendo giustamente orientati all’ambiente e al non sfruttamento di risorse naturali e soprattutto umane, mostrano maggiore interesse per questo tipo di gemme, rispetto le generazioni precedenti coinvolte maggiormente sulla unicità e rarità del singolo gioiello.

Grossi nomi dello spettacolo e del mondo web come Di Caprio, Lady Gaga, Penelope Cruz o i possessori di Facebook, Twitter e eBay hanno pubblicizzato o persino finanziato strutture per la produzione di diamanti sintetici, credendo nel loro futuro.
La Diamond Foundry uno degli ultimi produttori statunitensi comparsi sul mercato ha dichiarato di essere attualmente l’unico produttore di diamanti certificato “carbon neutral”, in quanto i suoi diamanti sono fabbricati in un reattore al plasma ad energia idroelettrica.
Sostiene inoltre che: “l’estrazione mineraria ha un impatto ambientale maggiore rispetto a qualsiasi altra attività umana. Per un singolo carato di diamante, devono essere scavate circa 250 tonnellate di terra, e vengono rilasciati notevoli quantità di inquinamento atmosferico con l’emissione pesante di anidride carbonica”.

De Beers attraverso il marchio LIGHTBOX ha iniziato la commercializzazione on-line di linee di gioielleria con diamanti sintetici incolori, azzurri e rosa ad un costo molto basso cercando di accaparrarsi una importante fetta di mercato mondiale. (1.00 ct 800,00 US$ – 0.50 ct 400.00 US$ – 0.25 ct 250.00 US$).

Dagli studi più del 60% degli intervistati sarebbero disposti, interessati all’acquisto di un diamante sintetico su un anello di fidanzamento, per il costo inferiore del materiale permettendo così di avere gemme di dimensione maggiore ad un costo inferiore.

I consumatori con disponibilità economica solitamente più legati al fascino, al mistico all’unico  e all’irripetibile…sembrano invece mostrare molto interesse per questo materiale.

I produttori di diamanti sintetici sono stati in grado di interessare i cosiddetti «millennials» promuovendo il Lab Grown Diamond  come high-tech, innovativo e pulito.

In tutti gli aspetti della loro vita cercano marchi, aziende e prodotti che ritengono trasparenti, socialmente e rispettosi dell’ambiente.

Il consumatore non crede ormai più nel valore dei diamanti o del gioiello in generale.

Ci sono infatti stati nel tempo diversi fattori che hanno diffuso sfiducia nel settore.

  • Operatori commerciali poco trasparenti
  • Scarsa conoscenza dei materiali e del mercato da parte degli operatori
  • Scarsa resa dei diamanti da investimento
  • Poche certezze

Occorre però tener conto che: un diamante naturale anche se di brutta qualità avrà sempre un possibile acquirente.
Non esiste invece un mercato secondario per i diamanti sintetici, soprattutto perché i commercianti di diamanti attuali tendenzialmente non li trattano.
Il «buon affare», il risparmio che si può avere acquistando un diamante sintetico, sfuma quando si pensa al fatto che sarà impossibile rivenderlo.

Al momento il quadro è decisamente confuso, poco chiaro. Gli operatori del mondo, dati gli interessi economici che ruotano attorno al materiale naturale, sono decisamente preoccupati e spaventati dalla improvvisa diffusione e dal numero delle operazioni mediatiche che stanno ruotando attorno al diamante sintetico.

Ma se guardiamo al passato quello che sta accadendo ora è stato promosso nello stesso ed identico modo in passato quando DeBeers all’inizio del secolo scorso attraverso operazioni mediatiche mirate e personaggi dello spettacolo (pensiamo a Marylin Monroe e alla frasi «i diamanti sono i migliori amici delle ragazze» e «li diamante è per sempre») ha diffuso l’uso del diamante in gioielleria in modo che potesse diventare per tutti «simbolo di vero amore eterno».

Quindi difficile dare una risposta al quesito iniziale anzi, possiamo aggiungere ora un altro quesito: “il diamante sintetico potrebbe essere una opportunità?”


Continue reading

  • 1
  • 2