Skip to main content

Lavorazione meccanica: focalizzare i punti critici

Andrea Friso

Product Division Manager – Legor Group S.p.A. – Bressanvido VI – IT

Andrea Friso attualmente ricopre in Legor Group S.p.A. il ruolo di Division Sales Manager per la divisione Master Alloy. Laureato nel 2003 in ingegneria dei materiali presso l’Università di Padova con una tesi su leghe d’oro di colori innovativi in collaborazione, collabora con Legor Group sin
dal 2004. È in azienda la figura professionale che opera da tramite fra forza vendite, area produttiva e area R&D, grazie all’esperienza maturata sulle diverse tipologie di prodotto e sul loro posizionamento sui diversi Mercati. Supporta la forza vendite nella pianificazione commerciale,
nel raggiungimento degli obiettivi e nel loro controllo periodico. Collabora con l’area tecnica e con l’area R&D relativamente allo sviluppo, l’avanzamento, la promozione dei prodotti.

La memoria intende concentrarsi su alcuni aspetti fondamentali del perché la deformazione plastica di una lega è così importante nel mondo produttivo orafo, e in seguito esemplificare tipici errori che si compiono in produzione, che portano a catena a dei problemi difficili da correggere a fine
processo. Obiettivo della memoria è quello di accompagnare i partecipanti in alcuni percorsi logici utili a ragionare su certi aspetti causa/effetto relativi al processo produttivo di deformazione plastica. Uno dei casi più comuni di difettosità in lavorazione meccanica è ad esempio l’ottenimento
di semilavorati che hanno problemi di fragilità o di tensioni residue, le quali possono avere cause diverse, singole o combinate, e che sono talora difficili da individuare. Inoltre, i processi attuali sono mediamente più complessi rispetto a quelli di anche solo una decina d’anni fa, a causa
di lavorazioni più spinte, o di controlli qualità più stringenti.

Scarica la presentazione

 

Continue reading

Improving abrasion and corrosion resistance of black finishes in the decorative sector

Improving abrasion and corrosion resistance of black finishes in the decorative sector

Introduction

Black decorative surface finishes are existing in several variations of accessible technologies and used every day covering a wide range of application methods. Though these methods have been used on an industrial scale for years, each method carries its own limitation. As the base substrates treated
have a high probability to be white in color in the case of aluminum, steel, and silver, or in other cases pre-plated with a white layer used to protect the base substrate as in the case of brass and zinc alloy, abrasion resistance is a key qualitative factor used to benchmark all categories
of black decorative surface treatments. As the black layer wears, the white layer is exposed, leaving a color contrast that is well defined by the human eye making it a rather simple task for the final buyer to evaluate the quality of the product as it ages. 

Specific to electroplating, black plating process have seen several modifications in recent years. With the European REACH compliance in full effect, some chemicals previously used as blackening additives or oxidizing agents can no longer be used. Metals historically used for black electroplating
such as nickel, cobalt, and chromium remain under constant scrutiny, increasing awareness of brands, buyers, and government agencies resulting in requests for limited use or no use of these metals increasing year by year fundamentally in the cases where the final object is to be worn or in contact
with human skin.

Some commonly used REACH compliant black processes in the decorative electroplating sector are black ruthenium and black rhodium. These treatments are generally considered flash with a maximum obtainable thickness of 0.2 micron and rather easy to be worn in time even with the elevated hardness of
both metals.

This paper will follow the development of a black gold electroplating process, run comparative trials against commonly used black decorative applications in our industries today, and explore its possible advantages both as a final and technical layer,    

Black decorative finishing technologies

Numerous types of black finishing methods are available and vary depending on the original substrate to be treated and the industry where applied. Though these processes are quite abundant in number, application, design, and cost limitations come to fruition when examined.

 Anodizing is a process for finishing aluminum alloys that employs electrolytic oxidation of the aluminum surface to produce a protective oxide coating. These coatings can be colored to a limited range including black. Though anodizing has a vast functional usage industrially, the process is used
heavily as a decorative method in many sectors to include home appliance, electronics, and most notably the mobile phone sector due to its cost/quality ratio. As the process is essentially a coloration of the metals natural oxide layer, anodizing is part of the aluminum itself providing total
bonding and excellent adhesion properties. The principal drawbacks to the process in general is that it tends to disrupt detail therefore it use is partial to simple shapes and the application itself is limited to aluminum and very few other non-ferrous metals restraining the processes overall
usage decoratively speaking.  

Paint and coatings are solvent or water diluted resin processes that provide the widest range of colors and effects of all the methods discussed. Though processing sequences may differ, paint and coating can be applied to any metallic or even plastic substrate. Due to this fact its usage can be found
in just about every sector examined however the spectacle frame market can be identified as having the most mature use of paint in the higher quality decorative ornament market. Many variations of black are obtainable with this type of application.  Single layer cataphoretic coatings (e-coatings)
are quite cost effective however suffer in either durability or oxidation resistance depending on the type of resin used. This set back can be circumvented with the use of 2 and 3 paint layer systems applied by spray using multiple resins, however in the end produces a higher cost due application
time and a raw material loss of up to 70%. The downside to the use of paint would be the fact that it disrupts the mechanical movement of functional parts such as claps, chains, and snap hooks. In the specific case of the spray application, it bonds to any substrate it contacts therefore jewelry
use is limited due to the constant presence of gemstones. Paint has also been stigmatized as “cheap” due to the plastic feel it tends to give to metal therefore many luxury goods sectors, depending on brand position, will not consider its use.

Physical vapor deposition (PVD) is a process that uses a vacuum chamber to pressurize a target into vapor which is then altered into a condensed film on the objects surface. Applicable substrates are limited to the temperature required to make the particular deposition which can be quite high limiting
use. This process is able to yield several colors to include black. One of the more recent process used is diamond like carbon (DLC) which produces a jet-black layer that is extremely hard and resistant to abrasion. Initial equipment investment is rather high making PVD by far the most expensive
technology discussed being difficult to find economically outside of China. Though very resistant to abrasion and wear, the chemical resistance of PVD tends to be rather weak due to the formation of microscopic pin holes formed in processing. This is eventually overcome with multiple treatments,
however the cost of the treatment is also dramatically affected. Given the watch sector uses stainless steel as a base material, maintains an elevated abrasion resistance requirement, and the geometries treated are standardized, makes it the perfect candidate for PVD and it use is widespread
throughout the sector.

Black electroplating treatments are vast using a large variety of metals to obtain the targeted result. Two of the most demanding decorative markets for this type of plating are the jewelry industry and the fashion accessories sector. Both sectors can be divided into high and low end segments. The
low end segments utilize metals such as chrome, nickel, tin, cobalt, or an alloy thereof principally due to cost. Though these metals are cost effective, the finishing obtained is not enough to pass normative climatic testing required by some brands. This fact paired with the increasing request
for nickel free finishes and stricter regulation as in the case of the European Unions REACH legislation, the higher end segments lean on metals such as palladium, rhodium, and ruthenium to obtain a black color. High end jewelry tends to use black rhodium where as high end fashion accessories
utilize black ruthenium. Where black ruthenium and black rhodium are able to pass most climatic testing if used with the proper pre-plating sequences, both have a maximum obtainable thickness of 0.2-0.3 micron so tend to present abrasion resistance issues. This is circumvented at the moment in
both high end sectors buy covering the metal with a paint to improve on abrasion or just by accepting the fact that the color will wear in time.

Which leads one to ask, is an abrasion resistant black layer obtainable without the use of paint, while maintaining both nickel free processing and REACH compliance? If so, can the market cost be bared?          

Nickel free black gold

Both rhodium and ruthenium have a maximum obtainable thickness of 0.2-0.3 micron mainly due to the fact that they are mono-metal systems that become brittle with thickness. With a target to improve abrasion resistance, the first objectives would be to maintain a good hardness while making the layer
more malleable and opening the range of reachable thickness. Omitting the use of nickel and cobalt to remain hypoallergenic as well as the use of copper which remains a principal source of oxidation, a bi-metal electrolyte was studied that included gold, palladium, and iron. The system was studied
at an alkaline pH to well receive the selected metals with gold in the highest concentration and iron with the lowest concentration of the metals used to develop the chemical.

Table 1 – Black gold electrolytic characteristics

Surface evaluation of the black gold alloy

When processed, the electrolyte produces an  alloy that is black in color and consists of 49% palladium, 39% gold, and 12% iron by weight making the deposit roughly 12.5 KT gold by title. To evaluate the alloy color,
the CIELab color coordinate system is used with principal focus on the L coordinate when evaluating black finishes.

Table 2 – Color coordinate comparison of black gold, black ruthenium, and black rhodium

The L coordinate is the luminosity value which in this case determines the overall darkness of the black deposit with the lower L value equating to a darker shade of black. The L value of 58 was measured with the black gold alloy.

This fits into the higher range of the industries standard black colors with L coordinates ranging from 50-60 in the case of black rhodium and a much wider availability of black shades with ruthenium having L coordinates ranging from 32-60. The most commonly used formulas of both rhodium and
ruthenium have L coordinates of 58 or 59.

Hull cell testing was conducted to identify the current density range, resulting in a mirror finished black panel produced at
1.0 A/dm
2 after 10 minutes of deposition time. This paired with the fact the electrolyte demonstrated good reach and throwing power, 1.0 A/dm
2 optimum current density value.

Thickness tests were done with the use of SEM/EDX microscope. Lab trials concluded that a level deposit of up to 2 micron was obtainable while maintaining a mirror like finish expected in the high end decorative plating sector.  With accurate thickness measurements, plating speeds were calculated
obtaining 1 micron in 12-15 minutes at 1.0 A/dm².

Chemical observations

The chemical has proven stable over a 12 month duration of time exhibiting no participation chemical elements if the proper pH is maintained. A fluctuating pH was detected in the electrolyte observing the pH dropping by roughly 0.2 each day.

The lowering pH can be corrected with the addition of pH adjustment salts, however would entail that operators of the black gold solution would have to monitor the pH solution of the daily, giving the electrolyte similar maintenance characteristics to a gold sulfite bath.

Figure 1 – pH variance in an 18-day period

Market segment plating sequences

Two of the more mature and standard black plating sequences were evaluated in each high-end market segment. In the case of jewelry, black finishing over silver was assessed as one of the more standardized cases. Starting from a base material of .925 silver, palladium is applied as the initial plating
layer followed by black rhodium in the most common finishing cycles. In this example, palladium is applied as a technical layer serving a dual use. The first improving the overall resistance to oxidation acting as a barrier to copper migration as well as preventing corrosion from environmental
factors. The thicker the palladium layer, the stronger is the resistance to climatic testing. The second reason for palladiums use is electrolyte protection. Palladium as a metal does not corrode in an acidic environment, whereas silver and the copper that it is alloyed with does. If the palladium
step is skipped, silver and copper will eventually disrupt the final quality deposited as their presence increase with time in the rhodium bath in the form of metallic contamination.

The high-end fashion accessories sector uses a completely different finishing cycle to obtain a similar color. The principal reason being that the initial base materials are typically either brass or zinc alloy and require a different plating sequence to finish to a high-quality result.  The most
commonly used cycles consist of 5-7 plating processes involving many layers for technical benefits. The selected sequence starts with alkaline copper for adhesion, followed by acid copper for surface brightness, moving to white bronze for improved hardness, then to palladium for oxidation resistance,
and finally 1-2 layers of ruthenium. In the case 2 ruthenium layers are used, the first layer is light grey ruthenium which is then followed by black ruthenium, improving the overall products wear ability in the end.   

To incorporate the black gold alloy into the selected plating cycles would allow for the addition of the new layer to be measured using the two industries most standard processes as the qualitative benchmark. 

Black Gold jewelry plating sequence

In the case of the proposed changes to the jewelry process cycle, the black gold was selected to replace palladium as the technical layer given the black gold alloy itself contains a high percentage of palladium along with the additional fact that both electrolytes have a similar alkaline pH would
mean minor processing deviations.

Sterling silver .925 parts were processed directly with 0.3 micron of the black gold alloy followed by 0.2 micron of black rhodium. Additional parts were processed with 0.3 micron of palladium and 0.2 micron of black rhodium to be used as benchmark in abrasion and corrosion testing. Following the
treatments, the samples processed using the black gold as an under layer had a visibly darker color that those processed with palladium, even though the final finish was the same black rhodium processed using the same parameters. This process defined in this paper as process sequence 1.

Figure 2 – Top row: Plating sequence chosen as reference cycle; bottom row: Test cycle with the implementation of black gold.

Black Gold fashion accessory plating sequence

The selected changes to the fashion accessory process cycle were different given the complexities of the plating process itself. In this case, we focused on the finishing cycle which incorporates 1 layer of ruthenium in the sequence. The black gold deposit was tested as a technical layer by using
it to replace the palladium layer in order to keep a similar cost, making quantitative room for the black gold. This process defined in this paper as process sequence 2.

Figure 3 –
Top row: Plating sequence chosen as reference cycle; bottom row: Test cycle with the implementation of black gold.

In addition, the black gold was implemented into the process as a final finish given that it shares a similar color to gunmetal grey ruthenium. As both deposits have an L coordinate of 58, this would be used to benchmark the black golds resistance to oxidation with a market segment standard.

Figure 4 –
Test cycle with the implementation of black gold as a final layer to test in contrast to ruthenium.

Brass parts were processed both with standard market segment plating sequences, and the relative black gold process deviations for qualitative testing.  This process defined in this paper as process sequence 3. 

Comparative testing

On the basis of the above information, the parts processed with more common plating cycles from the two selected market segments were comparatively tested against those processed with the black gold layer positioned in the sequence. Standardized normative testing methods were used to simulate oxidation
and abrasion.

Abrasion resistance

The test method used to gauge abrasion resistance in the high fashion accessory market is the Turbula test, designed to simulate wear or abrasion. A specific machine is used in which the rotation is mounted on a pivot creating a more aggressive environment compared to a standard tumbler.

The media used is elongated pyramid shaped ceramic, with a distinct form granting both sharp and flat contact points simulating two aggressive forms of abrasion. Testing is preformed with the media weighing roughly 41 grams per 100 pieces. Five parts are treated each test, with a fixed evaluation
phase following a turbula cycle at a fixed time and speed of 72 RPM.

Jewelry sequence results

Following one 3-minute abrasion cycle, the .925 silver specimens which utilized the black gold deposit as an intermediate layer proved to be more resistant to abrasion than the parts treated with the traditional palladium process. Further evaluation determined a better bonding between the black gold
and black rhodium layer when compared to traditional plating methods.

Figure 8 – Top row: palladium as an intermediate layer; bottom row: black gold as an intermediate layer both after abrasion cycle

  

Fashion sequence results

Following one 30-minute abrasion cycle, the brass samples which utilized the black gold deposit as an intermediate layer proved to be more resistant to abrasion than the parts treated with the traditional palladium process which demonstrated complete loss of the ruthenium layer and a failed result.

Figure 9 – Left: black gold as an intermediate layer; right –  palladium as an intermediate layer both after 30 minute abrasion cycle 

Synthetic sweat resistance

The synthetic sweat normative the high-end accessories perform is NFS 80-772:2010-10 which is a direct contact test and more aggressive than atmospheric versions of the test. Following this normative, samples are put into direct contact with an absorbent felt which has been doused with an artificial
sweat solution. The sample is sealed air tight and held at a consistent temperature of 55⁰C. The samples are then held for a predetermined duration of time in increments of 24 hours.

Following one 24-hour synthetic sweat cycle, the .925 silver samples which employed the black gold deposit as the middle layer demonstrated superior resistance compared to the parts treated with the customary palladium procedure. The surface of the pieces using the palladium process revealed elaborate
signs of chemical aggression.

Figure 9 – Top row: palladium as an intermediate layer; bottom row: black gold as an intermediate layer both following 24-hour synthetic sweat cycle.

Salt spray

Following the ISO normative 9227, objects to be tested are suspended in a sealed chamber and submitted to a constant salt spray for a predetermined duration of time. The test is designed to simulate a corrosive environment and test the substrates resistance in a cycle time 96 hour.

To test the salt spray resistance of the black gold alloy, process sequence 3 was used because in this case the black gold alloy is exposed as the final layer.

Following one 96 hour salt spray cycle, the brass  samples finished with both ruthenium and the black gold alloy showed no signs of corrosion.

Figure 9 – Left: Black Gold as top layer; Right:: Ruthenium as top layer both following 96 hour salt spray cycle

Conclusions

Initial laboratory testing has shown that the black gold alloy improved qualitative results when used as a technical/intermediate layer most notably, synthetic sweat resistance when applied over silver as a substitute for palladium and finished with black rhodium. When tested as a final layer, the
corrosion resistance was similar to that of ruthenium, but given the large cost differences when comparing palladium and gold with that of ruthenium and paired with the fact that the two electrolytes yield the same color, the use in this sense is unlikely.

The fluctuating pH of the black gold electrolyte can be seen as a limitation as it restricts the products use to qualified plating factories as it cannot be used in beaker plating which is quite common in the jewelry sector.

 Testing will continue into the future as the black gold electrolyte offers a wide range of obtainable thicknesses and considering the many different process sequences used throughout the decorative finishing industry, open up many doors of opportunity for this process, if combining electroplating
with other technologies such as PVD continues to gain popularity.

In the end, enhanced abrasion and corrosion resistance will remain a central target for many companies in the surface finishing sector. Qualitative improvements to commercialized goods improve customer satisfaction, increase brand reputation, and most importantly decrease our overall footprint to
the ecosystem with longer lasting products.

Continue reading

Improving your investment casting process

JÖRG FISCHER-BÜHNER

Consulente in Ricerca & Sviluppo

Il Dr. Jörg Fischer-Bühner ha conseguito un dottorato di ricerca. in metallurgia e tecnologia dei materiali presso il Politecnico RWTH Aachen. Da ottobre 2007 è attivo nella ricerca e sviluppo e collabora come consulente in Legor Group S.p.A., Italia, e in Indutherm GmbH, Germania. Prima è stato Responsabile della divisione di fisica metallurgica e ricerca sui materiali preziosi presso il FEM, l’Istituto di ricerca tedesco sui metalli preziosi e chimica dei metalli.

Scarica la presentazione

 

Continue reading

Development of New 950Pd Investment Casting Alloys with Superior Properties

Development of New 950Pd Investment Casting Alloys with Superior Properties

State of the Art

Palladium alloys were a topic at the Santa Fe Symposium mainly during 2006 and 2009 when the Pd demand in the jewelry section increased rapidly. Several papers on the palladium market [1], the investment casting process [2-4] and on the fabrication and manufacturing [5, 6] were published. The first investment
casting study on 950Pd alloys was presented by Fryé [4]. Due to the fact that limited information was available, the core purpose of this paper was to gain a better understanding of the casting characteristics of 950Pd alloys used in the jewelry industry. The work of Battaini [2] aimed at presenting
the main physical and chemical properties of palladium-based dental alloys and transferring the experience acquired in the dental field to the goldsmith’s.

In 2007 a study of the investment casting of 950Pd alloys was conducted by fem on behalf of Palladium Alliance International (PAI). The results were presented at the Santa Fe Symposium in 2008 and published in 2009 [3]. In the following section the main findings of these studies will be summarized.

2.1 Typical casting challenges with 950 Palladium alloys

Commercial 950 palladium alloys contain Ru, Ga or Co as main alloying elements. Table 1 provides a list of alloys with their most important properties and characteristics.

Table 1:                Overview on commercial palladium alloys taken from manufacturer’s alloy datasheets. AC = as cast, CW = cold worked, AN = annealed.

Ruthenium (Ru) is a platinum group metal with a white color that alloys well to palladium. Ru containing alloys show a higher melting temperature, because Ru increases the solidus and liquidus temperature according to the binary phase diagram. Ru has a limited solubility in palladium and therefore only
950Pd-Ru alloys are manufactured. The increase of the melting range by the addition of Ru requires higher casting temperatures compared to pure palladium. This results in higher thermal stress to the crucibles and investment materials during casting. The melting range of 950PdRu is very small, only
a few degrees Celsius. Some values given in manufacturer’s data sheets for 950PdRu are contradictory to phase diagram information. This is attributed to further alloying additions that are not specified or to the difficulty in the determination of the real melting range.

During solidification dendrites are formed and Ru segregates to the dendrite core and the remaining melt enriches in Pd. Usually the melting range increases due to segregation, but this is very limited for 950PdRu. As a consequence the alloy shows a nearly isothermal freezing and therefore a very limited
form filling during casting. This process was investigated in detail for 950PtRu [15].

Ru dissolves in palladium to form a solid solution. Pd-Ru alloys are relatively soft, because of the small difference in the atomic size of Pd and Ru. The typical hardness is about 100-120 HV1 in the annealed or as-cast condition. In order to improve the mechanical properties additions of Gallium
(Ga) are frequently used.

The binary phase diagram of Pd with Ga is shown in Figure 1. Ga has a very low melting point (29°C) and its addition significantly lowers the solidus and liquidus temperature of Pd. The maximum solubility in Pd is ca. 8 mass% Ga. At higher Ga concentration many intermetallic compounds form in complex
phase reactions. No systematic studies are reported on the precipitation hardening of Pd-rich alloys in the open literature. However, such studies are available for Pt alloys [16] and the results can be transferred to Pd.

Precipitation hardening is well-known and applied for 950Pt alloys [16, 17]. However, the solubility of Ga in Pd is higher than in Pt. Therefore, higher amounts of Ga are required in order to achieve the same hardness level – or for a given Pd content, e.g. 950Pd, the achievable hardness is lower. The
hardening response of Ga alloyed Pt is reported to be unstable and therefore classified as non-viable for reliable hardening by some authors [16].


Figure 1:              Conventional approach of hard palladium alloys with higher Ga content. Section of the Pd-Ga system (left) compared to the Pt-Ga system (right) calculated using ThermoCalc and TCNOBL1 database.

Experimental trials and corresponding investigations in a previous study at fem [3] focused on two alloys, one with Ru/Ga and the other with Ag/Ga/Cu. Hence no general conclusion can be made about the suitability of alloys for palladium casting depending on alloy composition. On the basis of defect analysis
on industrial castings, it seems that alloys having a relatively high Gallium content tend to have a higher susceptibility to formation of cracks in as-cast parts. Crack formation turned out to be a complex issue. In depth failure analysis revealed, that the underlying mechanism is related to particular
casting conditions and properties of investment material. It should be noted that crack-free castings of the Ru/Ga alloy have been obtained in reproducible way during casting trials at fem and are also obtained in high quality and reproducible way by several industrial casters which cooperated in that
project.

Silicon is a typical impurity that occurs in investment casting processes. If scrap material is used for remelting the removal of any investment residues is of utmost importance [2]. Such oxide residues might decompose during melting, especially under reducing conditions (forming gas: Ar/H
2
or N
2/H
2) that must be avoided. The released oxygen gets into solid solution inside the melt and evaporates during solidification to form significant gas porosity. Si forms a deep melting eutectic (Pd + Pd
3Si) at a temperature of 782°C. Such a low melting eutectic at the grain boundaries is responsible for hot tearing. An example of the catastrophic result of silicon impurities is shown in Figure 2 . The casting tree is completely embrittled. Many cracks in the parts cause multiple fractures that
occur along the interdendritic grain boundaries. Position 4 in the lower right image shows increased Si concentration determined by EDX analysis.

Figure 2:              Hot cracking due to contamination with investment residues.

3 Development process

3.1 Identification of suitable alloying elements

Potential alloying elements have been selected from the periodic table. Some elements have to be excluded, because they are volatile, toxic, allergenic or radioactive, too reactive under the typical conditions of investment casting or insoluble. The main requirements to the new alloy were:

Sufficient melting range of min 25K

Medium Hardness (130-160HV1)

Fine grain structure

The alloy 950PtRu was defined as benchmark for the development of new 950Pd alloys. 950PdRu has a promising silver-grey color compared to the grey color of most 950Pd alloys. It contains 100% platinum group metals and does therefore not require protective gas during processing. However, the fluidity
of the alloy is very low and some manufacturers do not recommend it for casting.

Only few elements remain as candidates. In order to overcome the poor casting properties of 950PdRu the following improvements are required:

Widening of the melting range  Addition of Co, Fe or Cu

Improvement of casting properties, especially form filling            Addition of Co

Optimization of the segregation, reduction of investment reactions        Addition of Sn

Improvement of color and hardness       Addition of Cr, Fe, B

Grain refining    Addition of Fe, W, Zr

Figure 3 shows the changing melting range of different 950Pd alloys were Ru is replaced by a third element (Me). On the left side of the figure we find the binary 950PdRu alloy and on the right the binary 950PdMe alloys. Some elements such as Au have hardly any effect on the melting range and the liquidus
temperature. Other elements (Ag, Cu,Cr) have a medium effect on melting range and liquidus temperature. In case of Cu relatively high amounts are required to achieve an effect. The strongest effects are shown by the addition of Co and Fe. However, because of their tendency to oxidation the amount should
be limited to maximum 2%.


Figure 3:              Effect of alloying additions to 950PdRu. Ru is replaced by a metallic third element (Me). The x-axis gives the amount of the third element in mass-percent. Calculated using ThermoCalc and SNOB3 database.

The effect of segregation during the solidification process can be simulated by so-called Scheil-Gulliver simulations. The effective melting range of an alloy usually increases, because the complete thermal equilibrium that is assumed in the equilibrium phase diagrams is not achieved during a relatively
fast cooling process. This results in a continuous change of the chemical composition of the liquid phase as the solidification proceeds and this effect is what can be studied by the Scheil-Gulliver simulations . The effect of such non-equilibrium composition changes of the melt on the solidus temperature
is shown in Figure 4 for a series of 950Pd-30Ru-Co,Fe alloys. The binary 950Pd-Ru shows a very narrow solidification range. The addition of 20 ‰ of Fe+Co reduces the solidus temperature and the segregation processes become more pronounced. The segregation of Fe and Co to the liquid phase results in
a reduction of the effective solidus temperature and allows a melting interval of about 30-100 K. This appears promising in terms of improved form filling, better feeding (reduction of micro shrinkage) and reduced investment reactions.

Figure 4:              Scheil-Gulliver calculation. Segregation of 950Pd-30Ru alloys with varying Fe and Co content.

3.2 Investment casting trials

Based on the above described consideration a series of alloy compositions was derived as shown in Table 2. 950PdRu served as benchmark alloy and was purchased from C. Hafner, Pforzheim, Germany. The alloys were prepared by arc melting from pure elements with a purity of 99,9% or better (purchased from
HMW Hauner Metallische Werkstoffe, Germany). The button shaped sample was cold rolled to sheet that was used for the centrifugal investment casting of typical trees according to Figure 5 with a mass of approx. 100 g. On these trees a basic characterization was made that comprised the determination
of color, metal release, hardness, age hardening response and microstructure. The tree contained a series of typical jewelry parts that are prone to typical casting defects. The grid was used for the testing of form filling and the plate sample for color measurements and metal release tests. Ca. 35
alloy compositions were prepared and investigated. Table 2 provides a selection of these compositions. The most promising alloys were selected and modified in the following step.

Table 2:                Alloy compositions tested in small scale trials (selection)

1.	Three-ball ring
2.	Single gate ring 
3.	Light signet ring
4.	Plate
5.	Grid
6.	Solitaire ring
7.	Double gate ring
8.	Heavy signet ring

Figure 5:              Casting tree setup and cast parts

Casting required a sophisticated process control in order to guarantee reproducible and reliable casting conditions (Figure 7). The casting machine was the model TCE10 from Topcast, Italy that allowed melting and casting within 40-60 s from the beginning of the heating process. A high quality quartz
based crucible of type „KGZ“ from Porzellanfabrik Hermsdorf, Germany was used for all casting trials. This type of crucible was proofed as suitable for platinum alloys in a previous study. The metal temperature was controlled during melting and casting with a thermal imaging camera. This allowed a detailed
evaluation of the metal temperature that is superior to the pyrometer integrated into the casting machine. Even the flask temperature could be controlled by thermocouples mounted onto the tree or close to the interior flask surface to document investment overheating. However, such measurements require
very high effort and where therefore used only in a very limited amount of casting trials.

The flask temperature was selected depending on the size and shape of the parts and was 650°C in most casting trials. This temperature showed the best compromise of high form filling and low shrinkage porosity. In order to reduce investment reactions as far as possible a two-part phosphate bonded investment
powder was used (Ransom&Randolph Platinum). After casting, the parts underwent nondestructive testing by computer tomography and by conventional metallography.

Figure 6:              Casting machine and process control (description see text)

Optimized form filling requires a suitable tree-setup. Based on the experience of previous casting projects with platinum, the parts were mounted on the leading side relative to the spinning direction of the casting machine. Figure 7 illustrates the casting setup, the acting forces and an example of
the simulation of the form filling process. Due to the mounting of the parts on the leading side the metal is forced to flow to the tip of the tree. The parts are then filled gradually from the tip towards the ingate of the tree. Details on the investment casting process and the casting simulation can
be found in [18, 19].

Figure 7:              Casting conditions in centrifugal casting. Orientation of the parts on the leading side of the tree. relative to the acting forces. Blue arrows indicate the rotation direction. Arrows indicate the acting forces: orange (inertia), red (gravity) green (resulting force). Simulation
of the form filling process.

After casting the tree was cut and documented as shown in Figure 8. The surface quality was assessed using the appearance of the plate sample. The grid sample provided information about the form filling, which was given in percent of the filled node points of the grid. Metallographic inspection was made
on the single and double gate rings that are prone to shrinkage porosity. The metallographic section of the plate sample was used for color measurement before and after a metal release test in artificial saliva. The results were categorized into three categories that are given in
Figure 9 for form filling, investment reaction and porosity. The microstructure and grain size were determined using scanning electron microscopy. Possible defects such as cracks, chemical inhomogeneity or inclusions were investigated ( Figure 10).

Figure 8:              Casting results and evaluation routine (description see text)

 

Figure 9:              Evaluation criteria for form filling, surface quality and porosity

Figure 10:            Microstructure in the as-cast condition of selected alloys

Table
3:                Main results of selected alloys in full-size casting trials

Table 3 provides the results of some selected alloy compositions. 950PdRu shows good basic properties with medium grain size and only very few intergranular cracks. The addition of Co reduces grain size and helps to completely avoid cracking. Fe additions are promising in reducing grain size, but cause
issues with heavy gas porosity. Despite that fact Fe as kept as potential alloying element. Cu brought no real advantages and reduced hardness resulting in distorted rings already during devesting. This led to the exclusion of Cu. Adding Cr resulted in too strong reactions with the investment and heavy
cracking hence Cr was excluded from the study. The addition of Sn significantly changed the grain morphology, which was rated as disadvantageous. However, the form filling was very good and the overall performance was good which kept Sn on the list of promising alloying elements.

Finally, the alloys marked in green were studied further while those marked in red were excluded from the study. Based on this evaluation the most promising alloys were selected and optimized in further steps by adding additional alloying elements. All alloys showed low hardness at this stage of development,
therefore the focus of further improvement was on increasing the hardness.

In order to improve hardness the literature provided boron (B) and aluminum (Al) as promising alloying elements [20, 21]. However, both elements are not easy to add due to their high reactivity. This required the preparation of pre-alloys with carefully adjusted amounts of Al and B. Using such pre-alloys
enabled the caster to prepare alloys that contain Al and B without the risks of oxidation during initial melting of the alloy. It further enabled the manufacturer to control the amount of alloying addition very precisely. Figure 11 provides results at different levels of B and Al. Small additions of
1‰ B (alloy PD1502) increase strength and hardness significantly while maintaining ductility. Additions of Al have a similar effect, but much higher amounts of Al are required. An approximately linear increase of strength and hardness was found.

These results were determined by tensile testing of rods that were cast into copper molds. Such casting results in fast cooling and might not be representative for investment casting. Therefore, further tests were done by investment casting. Strength levels and hardness are maintained by investment casting,
but ductility is significantly lower. This is typical and is usually an effect of the coarser and columnar grain structure after investment casting.

Figure 11:            Mechanical properties of selected alloys based on 950PdRu with additions of B and Al

Further optimizations in additional casting trials resulted in the compositions provided in Table 4. The boron content was reduced for safety reasons, because higher level of B might cause hot cracking under inappropriate cooling conditions. A combination of Al and B provided the best and reliable properties
in repeated casting trials. The combination of metals was more effective than single additions of even higher amounts. Alloy variations using Fe and Sn provide the benefit of grain refinement and improved form filling, respectively.

Table
4:                Compositions of optimized alloys meeting the hardness requirements

A comparison with other high caratage white alloys (Figure 12) shows some specific benefits of the newly developed 950Pd alloys. Compared to 950PdRu the hardness is significantly increased to levels of 140-160 HV1, which is considered optimum. Higher hardness might be beneficial for improved scratch
resistance but compromises the formability of the material during stone setting. The alloys show some age hardening response that might be used, if higher hardness is required. The comparison with state of the art 950 platinum alloys (green columns) shows superior properties over 950PtRu, but lower
hardness than 950PtRuGa, which is sometimes considered as too hard. The hardness is also comparable to 18k Pd white gold alloys that contain zinc for improved hardness (yellow column).

Further properties that should be considered are color and density of the alloys. For white alloys the yellowness index (YI D1925) is the accepted standard for color assessment [22]. YI values below 18 are considered as “premium white”, which means that the alloys do not require rhodium plating. 950PdRu
based alloys show YI values of below 10, which is comparable to 950Pt alloys. The color difference between 950PdRu and 950PtRu is hardly visible by a human observer. In contrast, premium 18k Pd white gold alloys with a YI value around 18 appear much more yellow. The density of 950PdRu based alloys is
close to 12 g/cm³, which is 60% of 950Pt alloys and 75% of 18k white gold alloys. The lower density enables the manufacturer to produce bulkier jewelry at the same weight or light jewelry, e.g. earrings or pendants. The combination of the properties labels the newly developed 950PdRu alloys as
“light, bright and strong”.

Figure 12:            Comparison with commercial alloys (typical properties according to [23])

4   Summary and Conclusions

The present paper describes the development of 950Pd alloys with improved properties for jewelry applications. Promising alloy compositions were selected based on thermodynamic calculations, which were then melted and cast by centrifugal investment casting. Typical crucibles and investment materials
that proofed to be suitable for platinum alloys were used. These materials were found to be suitable for 950Pd alloys as well. The melt was overheated by ca. 80°C prior to casting. The flask temperature was 650°C in most casting trials. Alloys containing boron can be sensitive to flask quenching. Therefore,
the flasks should be cooled slowly to room temperature before devesting.

The new alloys are based on 950PdRu and contain additional alloying elements to widen the melting range (Co, Sn, B), to reduce grain size (Fe) and to increase hardness (Al, B). Typical liquidus temperature of such alloys was 1560-1570°C, which is slightly lower than 950Pd50Ru. The addition of the above
mentioned alloying elements increases the hardness from ca. 100HV1 of the soft binary alloy 950PdRu to 140-160 HV1. This hardness range is assumed to be the ideal hardness for stone setting and finishing that provides sufficient scratch resistance during jewelry wearing. Such hardness is also reached
for medium to hard 950Pt alloys of Ni-free 18k white gold alloys. The color of 950Pd alloys is comparable to 950Pt. Both groups of alloys show a yellowness index of about 1, which is significantly whiter than Premium white gold alloys (YI <18). The density of 950Pd alloys is ca. 40%and 25% lower
compared to 950Pt and 18k Pd white gold, respectively. The low density is an advantage for light or bulky jewelry items.

The binary alloy 950PdRu suffers from the low hardness. The new 950Pd alloys show superior hardness while maintaining good form filling ability, low crucible and investment reactions and sufficient resistance to hot cracking wit suitable process conditions. They might therefore enable 950Pd alloys to
become an option for jewelry applications.

5   Acknowledgements

Norilsk Nickel, Russia, is acknowledged for financial support of this work. Linus Drogs (AuEnterprises, USA) is acknowledged for supporting this project and consulting during its realization. The colleagues at fem are kindly acknowledged for their contribution to SEM investigation, metallography and
chemical analysis.

6   References

1.            Swan, N. and B.J. Williams.
Palladium – light, bright and precious – a world view. in
The Santa Fe Sympoisum. 2006. Albuquerque, USA.

2.            Battaini, P.
Investment casting behavior of palladium-based alloys. in
The Santa Fe Sympoisum. 2008. Albuquerque, USA.

3.            Fischer-Bühner, J., A. Basso, and M. Poliero.
Challenges for Palladium Casting Alloys. in
The Santa Fe Sympoisum. 2009. Albuquerque, USA.

4.            Fryé, T.
Palladium casting: an overview of essential considerations. in
The Santa Fe Sympoisum
. 2006. Albuquerque, USA.

5.            Battaini, P.
The working properties for jewelry fabrication using new hard 950 palladium alloys. in
The Santa Fe Sympoisum. 2006. Albuquerque, USA.

6.            Mann, M.B.
Palladium: manufacturing basics for servicing, assembly and finishing. in
The Santa Fe Sympoisum. 2007. Albuquerque, USA.

7.            Johnson-Matthey.
JM jewellery alloys. Available from:

http://www.noble.matthey.com/jewelry

.

8.            Hafner, C.
Palladium alloys
. Available from:


http://www.c-hafner.de/de/leistungen-und-produkte/edelmetall-produkte/werkstoffe/werkstoffe-fuer-schmuck-und-dekorative-anwendungen/

.

9.            Heimerle+Meule.
WKD_189-950. Available from:


http://www.heimerle-meule.com/fileadmin/dateien-global/02_Products/Schmuckhalbzeuge/Produktuebersicht/Werkstoffdatenblaetter/Legierungen/Pd_500_585_950/englisch/WKD_189-950eng.pdf

.

10.          Wieland. 2016; Available from:


http://www.wieland-edelmetalle.de/produkte/schmuckhalbzeuge/palladium/page.html?L=0

.

11.          Agosi.
Agosi palladium alloys
. Available from:


http://www.agosi.de/wp-content/uploads/2015/09/AG_AgosiManufaktur.pdf

.

12.          Legor.
Legor palladium alloys
. Available from:

http://products.legor.com/EN/download

.

13.          Hoover&Strong. 2016; Available from:


https://www.hooverandstrong.com/media/pdfs/MaterialSpecs-950Palladium-01-2015.pdf

.

14.          UnitedPMR.
950 Palladium Grain (PD950). 2016; Available from:

http://www.unitedpmr.com/palladium_950_grain.php

.

15.          Klotz, U.E., et al.

Platinum investment casting: material properties, casting simulation and optimum process parameters
. in
The Santa Fe Sympoisum
. 2015. Albuquerque, USA.

16.          Biggs, T., S.S. Taylor, and E. van der Lingen,
The Hardening of Platinum Alloys for Potential Jewellery Application.
Platinum Metals Review, 2005.
49(1): p. 2-15.

17.          Kretchmer, S.,
Heat-treatable platinum-gallium-palladium alloy for jewelry. 2003, Palenville, NY, US.

18.          Heiss, T., U.E. Klotz, and D. Tiberto,
Platinum Investment Casting, Part I: Simulation and Experimental Study of the Casting Process. Johnson Matthey Technology Review, 2015.
59(2): p. 95-108.

19.          Klotz, U.E., T. Heiss, and D. Tiberto,
Platinum Investment Casting, Part II: Alloy Optimisation by Thermodynamic Simulation and Experimental Verification.

Johnson Matthey Technology Review, 2015.
59(2): p. 132-141.

20.          Böhm, W.,
Legierung auf der Basis von Platin, Palladium oder Gold. 2011.

21.          Blatter, A., J. Brelle, and R. Ziegenhagen,
Allaige à base de palladium. 2006, PX Holding S.A., 2304 La-Chaux-de-Fonds, CH.

22.          Henderson, S. and D. Manchanda,
White gold alloys. Gold Bulletin, 2005.
38(2): p. 55-67.

23.          Fryé, T. and U.E. Klotz.
Mechanical properties and wear resistance of platinum alloys: a comparative study. in
The Santa Fe Symposium on Jewerly Manufacturing Technology. 2018. Albuquerque, NM, USA: Met-Chem Research.

Continue reading

Introduction: the galvanic process

Introduction: the galvanic process

Galvanic process refers to the depositing of a metal or metal alloy by using electrolysis during which the electrical energy developed inside the system is converted into chemical energy thus leading to a series of oxide-reduction reactions. The result of this phenomenon foresees that the electrical
current passing through an electrolytic system reduces the metal ions dissolved in the electrolytic solution to form a metal plating on an electrode. With this technique, in fact, the properties of an object’s surface can be modified and the system is therefore used in industry to protect structures
and metal objects from the effects of corrosion. The decorative purposes are no less important: in the jewellery and fashion sector, jewellery and fashion accessories are usually made by depositing layers of various thicknesses of the most noble metals onto less precious metal bases.

The simplest system for carrying out a galvanic process foresees (Figure 1):

Figura 1

Figure 1 : Diagram of an electrolytic system.


Constant voltage generator:

This is the actual plating bath engine in that it supplies the energy and current required for the oxide-reduction processes. To be more precise, the constant voltage generator uses a circuit rectifier which transforms the alternating current into direct current with alternating current residues of less
than 5%.


Cathode:

The negative electrode in the reduction process. It consists of the item to be galvanized and on which the dissolved metals in the electrolytic solution will be deposited. In fact, these are reduced at the interface between the electrode and the solution. The potential that leads to reducing the metal
around the cathode is called deposition potential. If the current distribution around the cathode is known, one can also have an idea of the thickness of the metal deposited on every part of the item being galvanized.


Anode

: The positive electrode in the oxidization process. The anodes can be active (or soluble) or inert (or insoluble). In the first case, the oxidization process foresees dissolving the metal that the electrode is made of which, from a state of nil oxidation, will transform into a dissolved ionic species
in the solution. In the case of inert anodes, these do not take part in the anodic reaction but play more of a supporting role in oxidation ensuring the electronic exchange at their surface and, therefore, the closure of the circuit.


Plating bath


: The electrolytic solution in which the metal salts to be deposited on the cathode are dissolved. It is the means that allows the current to be passed through the ions inside the solution. The electrolytic system will therefore consist of a solvent (water in the vast majority of cases) which has the
capacity to ionize the dissolved species within it. To be more precise, the solution contains the metal salts to be deposited and the conductive salts, i.e. easily ionizable species that are able to transmit current in the solution through ionic conduction. The current therefore passes through
the electrolytic system by means of the dissolved ionic species inside and allows the dissolved metals to be reduced onto the cathode. Usually the plating bath also contains other inorganic or organic additives that help to obtain more compact, smooth or shiny plating, thus influencing the plating
structure. Examples of these are surfactants that are able to lessen the surface tension between the solution and cathode in order to avoid gas permanency at the cathode-solution interface which could create plating defects. Others, however, are brighteners, or rather, substances able to produce
very fine grain electro-deposits and therefore give a shiny look.

Characteristic parameters of a galvanic process

Every type of plating bath will express the maximum potential of its performance if a series of parameters are respected. These depend on the type of metal or alloy being deposited and by the chemistry that the electrolytic system consists of. These characteristics are outlined below:


Potential difference:

This is the parameter through which the energy needed for the electro-plating process is supplied. Each metal ion has its own specific potential difference value as a result of which its reduction and consequent deposition on the cathode will occur. As a general rule, metals with a more negative value
than the standard reduction potential (Table 1) are also those that are more easily electro-plated. These potentials, however, are equilibrium values while galvanic processes are intrinsically dynamic processes, besides the fact that temperature and concentration parameters are often different
to the standard. The potential at which plating occurs is called the
deposition potential. This potential varies with the concentration of the metal in the bath and also depends on the current density. In fact, when current density increases, the polarization effects on the electrodes also increase and, as a consequence, conditions are more favourable for
depositing lower potential value metals than reduction standard. For this reason, metal deposition occurs within a more or less wide range of tension values.

Figura 2

Table 1: Standard reduction potentials for the most common chemical species.


Current density:


This parameter is much more important than tension in the galvanic process. Since the galvanic process is dynamic, the current generated by the potential difference is the parameter that is more greatly connected to the formation and growth of the metal deposit. The real parameter that determines the
quantity of electro-plating that forms on the cathode is the load quantity that flows during the electrolytic process. A more suitable parameter to check and which provides better load quantity management to ensure that it comes over the object being plated is certainly current density, or rather,
the load quantity that flows through a surface unit in a time unit measured in A/dm
2. The parts of items being treated that receive more current than the others are called
areas of high current density. In general, these are the pointed parts, those more exposed to the anodes, the initial or end parts of the item immersed in the plating bath. On the other hand,
areas of low current density are the exact opposite, that is, the central areas of the items and the most hidden parts. It is not always possible to work by controlling the current density because it is sometimes hard to determine the cathode surface, as in the case of barrel plating processes.
In these cases, the work is done by exclusively controlling the tension.


Temperature

: Although to a lesser extent, this parameter also contributes to supplying the necessary energy for carrying out the electro-plating process. It is a parameter linked to electrolytic process kinetics and determines effectiveness and speed. Together with conductive salts, the temperature helps to regulate
conductivity as well as plating bath penetration power. For these reasons, it must be accurately measured and maintained within a specific range of typical values for each plating bath.


Processing time


: This corresponds to the time needed to deposit the metal or alloy and to obtain a good quality plate of the required thickness. Obviously, the greater the processing time, the greater amount of metal will be deposited. An ideal processing time for each plating process is defined from a compromise between
the quality of the plate and the quantity of metal to be deposited.


Cathode efficiency


: Expressed in milligrams of deposit by Ampere-minute (mg/Amin), cathode efficiency indicates the quantity of metal or alloy deposited in one minute, working with a current of one ampere. It leads to understanding the effective possibility of depositing a metal by defining an estimate of how much current
is effectively responsible for forming the plate. In fact, in many cases, part of the current is consumed in accessory processes, like, for example, the development of hydrogen. The cathode efficiency of a plating bath depends on many factors and varies according to temperature, tension, metal
and additive concentration in the solution.

It is important to underline that the values of the typical parameters of a plating bath are not strict but it is generally possible to define a more or less wide range of good operability for each of the above-described parameters.

How to obtain good galvanic plating

Before going into the details of how to obtain good galvanic plating, it would be appropriate to define what exactly good quality plating is. Obviously, the quality of galvanic plating depends on the particular application for which the plating is required. In some cases, for example, it may be enough
for the metal to cover the objects being processed and therefore that the plating merely adheres well to the substratum. In the case of plating for decorative jewellery, the absence of porosity, which gives the plating its polished and shiny look, must also be added to the previously described
conditions as well as the need for good resistance to corrosion. In other cases, the thickness and hardness of the plating will also need to be evaluated.

To obtain good quality galvanic plating, it is undoubtedly necessary to have the right equipment as well as quality products but even so, this may not be sufficient. In most cases, imperfect plating results either from not respecting the parameter characteristics correctly for the specific plating bath
or from not preparing the items properly before performing the galvanic plating process.

2.1. Respecting the characteristic galvanic process parameters

In regard to the first aspect, it is important to keep within the optimal work
range
of each individual typical plating bath parameter in order to obtain a good quality plate. It is not certain that whether not respecting any one of these values will definitely result in a problem with the plate, but the galvanic solution will certainly have gone beyond its region of maximum
performance and this could lead to coming up against one or more plating defects or, in the worst situation, could even definitively compromise the plating and force the user to stop completely.

The most common precautions for obtaining a good quality galvanic plate are shown below, parameter by parameter:


Potential difference


: This, together with current density, is definitely the parameter to which more attention should be paid. Tension is easy to measure and often provides information regarding changes in the galvanic process, such as a reduction in conductive salt content or polarization effects at the anode. A tension
range within which a good quality plate can be obtained is usually defined for each process.


Current density:

In order to be certain of not incurring problems, the parameter on which to place total trust when checking the right energy needed to correctly form the deposit is current density. Working with current density values within the pre-established range certainly guarantees supplying the correct load to
the cathode and therefore of forming a plate with the right chemical-physical characteristics, like, for example, the right proportion of alloy, the right colour and the right grain finishing. The ideal current density range can be qualitatively and quantitatively evaluated by a Hull cell test
or bent-cathode test (Figure 2). If current distribution around the cathode is known, a good estimation can be made of how the metal will coat the entire object: the parts where the thickness will be greater or less. As shown in Figure 3, the galvanic plate will tend to form and grow mainly at
the corners and edges because these are the zones where the current is most greatly concentrated (high current density areas) and will collect less in hidden areas or, in general, in places furthest from the anode because it tends to concentrate less in these areas (low current density areas).

Figura 2

Figure 2 : Example of a Hull test (left) and a bent cathode (right).

Figura 3

Figure 3 : Diagram of the way in which a galvanic plate tends to grow. In the high current density areas (L), the deposit is greater compared to the low current density areas (D).

If the metal distribution obtained is not the one required, some precautions can be taken to improve it:


Modify the way in which the items are linked to the frames

: knowing that most of the current will accumulate in the corners of the items being plated and knowing that the current always tends to follow the shortest route between two conductors, in order to reduce the load accumulation at the corners of the objects, it is a good idea to place them as far away
from the anodes as possible. For this reason, if working in beakers, the recommendation is to place the objects parallel to the anode instead of perpendicular (Figure 4).

Figura 4

Figure 4 : To optimize galvanic plate homogeneity, it is a good idea to place the objects to be plated directly in front of the anode.


Modify the anode-cathode distance:

the anode should be shaped so that the anode-cathode distance is as similar as possible for all surface points and slightly further away from borders thus favouring current passage towards lower current density areas.


Take advantage of shielding effects:

when working with several objects at the same time, the pieces can be linked so that the corners shield one another thus creating effective obstacles against load accumulation in these areas (Figure 5).

Figura 5

Figure 5 : Diagram of the possible effect of reciprocal shielding of the items to be plated positioned parallel to the anode.


Temperature

: Each plating bath has its own precise working temperature. It is strictly correlated to solution conductivity: the higher the temperature, the greater the solution conductivity and the bath’s penetration power can therefore also be greater, i.e. the capacity to homogenously deposit metal even in areas
of very low current density. Any conductivity diversity is a critical aspect when several metals are being co-deposited to form an alloy: a change in temperature introduces a variation in the percentage of metals in plating alloys. In some case, as in rhodium plating, it is possible to work at
lower temperatures to those recommended but plating performances are notably reduced.  Besides lower efficiency, in fact, also the colour of the plating tends to be less bright because the brighteners activate at the suggested processing temperatures. On the other hand, working with excessive
temperatures could damage the system’s chemical components or excessively increase the efficiency of the process and lead to poor quality plating. In short, temperature is a parameter that should absolutely not be ignored and, consequently, effectively controlling it through thermostats and thermocouples
is required to avoid excessive temperature fluctuations.


Processing time:


There is a minimum processing time for each type of galvanic plating below which, the metal deposit will not be uniform. This time depends on the cathode efficiency of the solution: the higher it is, the less the minimum time for obtaining uniform plating will be. As is quite obvious, the longer the
processing time, the greater the plating thickness. It is, however useful to remember that not all galvanic baths have the capacity to produce extremely thick layers of plating. For this reason, especially in the case of baths devised to create thicknesses of less than 0.5 microns, a maximum
deposition time is defined beyond which the plating could be of poor quality. In the case of thick plating, the time needed to deposit one micron of plating is usually indicated and, also in this case, a maximum deposition time corresponding to the maximum plating thickness that the galvanic
bath guarantees for good quality plating, can be defined.


Cathode efficiency


: As already mentioned, this is not a real parameter to be set but rather an intrinsic characteristic of the solution that depends on other parameters. Nevertheless, it is an aspect that should not be ignored when aiming at obtaining a good galvanic plate since it provides an idea of the metal thicknesses
that the electrolytic solution is able to guarantee with good quality. A low efficiency value, in fact, indicates that the plating bath is suitable for a colour additive, a flash, and consequently, will not easily perform well for carrying out thicknesses of one micron (Figure 6).

Figura 6

Figure 6 : SEM image of the section of a sample that has various plating layers whose thicknesses have been measured.

Generally, thickness plating baths have medium-high cathode efficiency (greater than 15 mg/Amin), a higher concentration of metal (never less than 3 g/l) and also high density values. Without these three elements, it will be difficult to obtain good quality thick deposits.

2.2. Respecting the chemistry of the solution

In some cases, metal distribution can be improved by acting on the solution chemistry, for example, by using additives to modify the efficiency or conductivity.

A plating bath should always be kept within the values of reference regarding the concentration of its various components. The reasons for modifying the composition of a solution may be:


Decomposition of the chemical substances


– Drag-in and drag-out phenomena

It is quite rare that a solution will not need additives. Since they are necessary, the advice is to use them often and in small quantities so that the chemical substances never go outside the processing range. Adding them in large quantities is often not recommended due to undesirable accessory sub-reactions
that can occur or due to excess impurities that can contextually be included in the chemical species added to the bath.

The pollution aspect linked to the metal or organic type is also not a secondary aspect. The former is generally due to cross-contaminations between solutions or to anode and cathode crumbling or the breakdown of any other metal objects that may come into contact with the galvanic solution, or, lastly,
to improperly demineralized water. Organic contamination can also be due to cross-contamination with degreasing and neutralizations or simply to dirt that can accidentally appear in the galvanic solution or, lastly, to degraded additive residues that no longer work or contaminated water. The
risk, in fact, is that contaminations of this kind can be included in the galvanic plate, thus decreasing its quality. To avoid these inconveniences, the solution can be periodically filtered or treated with carbon active purifiers (b) or purification processes that take advantage of the electro-deposition
on large-sized sacrificial cathodes at low current densities (dummy plating). In the case of high-volume electrolytic solutions, it is always recommended to work with a constant filtering system while for small usage, filtering can be done with paper (Figure 7) and, obviously, one extremely useful
precaution is to cover the solution or tank when it is not in use for long periods of time.

Figura 7

Figure 7 : Examples of a paper filter used to filter ferrous precipitate (left) and filter cartridges used in plating system filtration (right).

2.3. Respecting preparation steps

The quality of the plate also depends on the condition of the item being plated and the preparatory phase. The objects to be treated must be polished in order to eliminate porosity and any other surface imperfection prior to galvanic deposition. It is therefore necessary that the objects to be plated
are of good quality and accurately prepared before carrying out the treatment (Figure 8). The preparatory phase is a highly underestimated aspect but, by following some simple basic rules, most plating problems can be resolved by proper preparation.

Figura 8

Figure 8 : Comparison between unpolished (left) and polished (right) brass rings.

When preparing the pieces to be plated, their surfaces must be thoroughly cleaned and free of any contaminants and their activation in order to optimize metal adhesion in the subsequent electro-plating phase. In theory, the steps to follow depend on the surfaces and the type of initial alloy on which
the metals are to be deposited. Keeping within the field of jewellery and fashion, the following steps for preparing the objects can be taken as standard (Figure 9):

Figura 9

Figure 9 : Diagram of the preliminary cleaning and surface activation steps for items to be plated.

– Ultrasonic cleaning

– Electrolytic degreasing

– Neutralization

The items are washed and rinsed after each of the previous phases. In fact, when the object is removed from a bath, its surface is coated with a liquid film of the solution in which it was previously immersed. This residue must therefore be removed in order to avoid cross-contamination.


– Ultrasonic cleaning


:

Ultrasonic cleaning eliminates any polishing procedure grease, oil and cleaning paste residue from the items to be plated. The functional principle is the cavitation generated by ultrasound: the vibration of the piezoelectric elements in the ultrasonic washing machine produces high frequency waves that,
in turn, generate bubbles in the solution that strike the surface of the objects at high energy, thus removing any contaminants that may be present. Normally the solution containing the detergent for ultrasound works at a specific temperature that favours dissolving the cleaning paste in strict
collaboration with the cleaning action carried out by the relative detergents and with a mechanical rather than an ultrasonic action. Consequently, in order for the ultrasonic cleaning procedure to be effective, the solution must contain the appropriate detergents and work at a specific temperature,
otherwise the degreasing action will not be sufficiently effective (Figure 10).

Figura 10

Figure 10 : Characteristic phases of the typical cavitation process in an ultrasonic washing machine.



Electrolytic degreasing
: This second preparatory phase requires using electrical current. Besides re-cleaning the items after their first ultrasonic cleaning, this process consists of a chemical activation of the surfaces to be electro-plated. After the electrolysis process, hydrogen
bubbles can develop on the pieces thus ensuring cleaning and the activation of the metal surfaces in order to optimize and maximize subsequent electro-deposition. This phase is essential for avoiding deposit adherence problems. The degreasing solution is usually alkaline and consists of a series
of chemical substances that attack dirt molecules, capturing them on the surface and thus stopping them from being re-deposited, and remove any oils and grease that ultrasonic cleaning has not removed adequately.


Neutralization: Neutralization is a simple chemical process that neutralizes all substances, usually from electrolytic degreasing, that pollute and are incompatible with subsequent plating processes. These residues are cleaning agents left on the surfaces of the items. The solution must be
chemically opposed to that of degreasing. Since degreasing is almost always alkaline, neutralization will require a more acid solution. With neutralization, the objects being treated are perfectly clean and the surface is neutral and ready for electro-plating.

A simple and effective way of checking that the preparation procedure has been carried out correctly consists of seeing if the object’s surface is water-break free. Indeed, if the object has been well activated, water will flow over its surface homogenously, forming a uniform liquid film. This provides
the assurance that the surface is sufficiently free of contaminants which might otherwise provoke plating differences on the surface. If the surface is not adequately clean, drips or areas where the uniformity of the liquid film is broken will appear (Figure 11).

Figura 11

Figure 11 : Comparison between an improperly prepared surface (left) and a correctly prepared surface (right) using the water free break check. The presence of drops in the picture on the left and the regular liquid film on the right well show that the first surface was improperly prepared compared to
the one on the right.

Working almost exclusively with water-based solutions, it is clear that, in order to obtain a good quality galvanic plating, the right water must be used. The quality of the water used in plating strongly affects the final result of the plating process. For these reasons, the water must be free of any
organic contamination and have a low saline content (less than 5 microsiemens). Industrial plating systems are usually equipped with columns with active carbon and ion exchange resin. For galvanic solutions, therefore, the best choice is to use deionized water.

Causes of galvanic plating defects

When plating is not of good quality, it is said to have defects. There are a vast range of imperfections that can appear on the surface of the object on which galvanic deposition has been carried out and which spoil the aesthetic aspect and affect the chemical-physical properties.

3.1. Types of galvanic plating defects

In an attempt to outline the defects, the following can be defined:
focal defects, or rather, non-extensive defects positioned in a more or less regular manner on the plate surface;
surface defects, that is, defects that homogeneously involve all the object’s surface or large continuous areas of it; and
adhesion and cohesion defects relating to the capacity of the galvanic deposit to adhere to the underlying metal and to stay intact, overcoming the forces of tension that necessarily arise during the nucleation and growth processes of a plating layer on a surface.

The most common focal defects are (Figure 12):

Figura 12

Figure 12 : Examples of different types of focal defect. Top from left: dark spots on the plate (circled in red), white spots on the plate (circled in red), dark post-oxidation spots (circled in red). Bottom from left: cloudiness, bubbles (circled in yellow) and pitting (circled in red).


Dark spots on the plate (burning spots):

these are irregular spots on the plate surface. They can be in the centre of the deposit but are more often found on the object’s extremities, in high current density areas. They are usually generated by over-high tension or by conductivity problems, such as the use of a damaged anode or a contaminated
solution.


White spots on the plate (stains):

these spots appear very close together and are not necessarily small. They are usually due to an incorrect preparation procedure or to conductivity problems in the bath due to the solution being contaminated or old, or also to the use of unsuitable tools, such as malfunctioning anodes.


Pitting:

This refers to micro-porosity or generally tiny round concave holes found irregularly on the plate. This defect is often due to an improper preparation procedure or to pre-existing imperfections on the surface of the items to be plated that were not eliminated in the polishing or tumbling phases. In
both cases, oxidative phenomena generated on the surface cause the defect.


Bubbles and blisters:

These are authentic, round accretion bubbles on the plate surface. They usually tend to form in high current density areas but can also be found in other parts involved in the galvanic plating process. In this case too, the reasons that lead to their formation are ascribable to an incorrect execution
of the galvanic process or the age of the plating solution.


Streaking:

Streaks can appear either as concentric rings that go from the high current density areas to the low current density parts or as streaks generating from the object’s edges. They mark the onset of burning phenomena due to excessive tension conditions or to a low metal content in the solution or the solution
generally being too old.


Haziness/cloudiness:

These are random plated surface areas where the plate is translucent and cloudy as if covered by a whitish veil. They are usually due to incorrect processing parameters such as the absence of solution movement, too low temperature and/or current density or improper object preparation or the use of inefficient
instruments or, lastly, organic contamination in the solution.


Dark post-oxidation spots:

This refers to the appearance of spots immediately after having carried out the deposition or in the phases immediately after drying. The occurrence of similar oxidative phenomena is usually due to poor adherence or distribution of the plate on the surface after improper preparation or because of the
original surface being excessively rough.

There now follows a list of the most common defects found on surfaces (Figure 13):

Figura 13

Figure 13 : Examples of various types of defect that affect large areas. From left: burning, dull deposit, discoloration.


Burning:

This occurs when the entire deposit or portions of it have a large grain finishing with a dull and not so shiny look, a coarse, rough and often poorly adhesive plate. This defect is usually due to the tension or current density being too high or when there are conductivity problems due to the absence
of additives in the solution, or to a low concentration of metal to be deposited. An incorrect procedure, such as not stirring the solution, can lead to this type of defect.


Dull deposit:


This deposit is not polished or shiny in large and well-defined areas of the object. In fact, when looking at the deposit in the high current density areas, the defect is usually due to similar causes as those that lead to burning, while, when the low current density areas are examined, the problem is
an improper preparation of the items to be plated or incorrect temperatures. A contaminated solution can also be the cause of a dull deposit.


Discoloration:

In some cases, areas of the same object can have different colours or the entire deposit can be lighter or darker than the required shade, especially in the case of alloy plating. This defect is usually due to using the wrong temperature and current density or tension, or to a low concentration of metals
in the solution. Deposit iridescence is also included in this type of defect, an aspect that is due to lower thicknesses than the recommended parameters or to conductivity problems linked to malfunctioning anodes or to electrolytic solutions with a low conductive salt content.


Low levelling:

This is characteristic of thick deposits if the deposit is not homogeneously distributed and discontinuities can be identified similar to a series of overlying planes or similar to uncoated porosities. This defect is usually caused by an inadequate concentration of additives in the solution or to their
age or, lastly, to the fact that the galvanic plating processing parameters have not been respected.


Low throwing power:

Penetration power refers to the electrolytic solution’s ability to deposit the metal correctly in the low current density areas with the most homogeneous thickness possible. If this does not occur, there will be discoloration or no deposit in these specific areas of the object being plated. This usually
happens when the processing parameters are not respected or when the solution needs conductive salts (Figure 14).

Figura 14

Figure 14 : Example of a chain plated with ruthenium at low temperature and tension compared to the reference values. The penetration problems are clear since some areas of the chain have no plating and others are irregular.

Lastly, defects which cause the electro-plated layer to come away from the substratum need to be taken into consideration. Adhesion defects are those that occur immediately after galvanic deposition or even at the same time as the galvanic process itself. Usually there are two ways in which the deposit
can detach: (Figure 15)


Peeling:
when the deposit flakes, depending on the foil


Blistering:
when the deposit crumbles altogether to form a fine powder, otherwise known as floury.

Figura 15

Figure 15 : Examples of adhesion defects. At top left, ruthenium-plate blistering, at bottom right, nickel-plate peeling.

Lack of adhesion is often due the objects being improperly prepared or to the absence of pre-strata underneath the final one, or the deposition parameters (specifically, temperature and tension) not being respected. However, when deposit loss occurs at a later moment, often following the application
of variable degrees of stress on the plated object, the defects are referred to as
cohesion defects
.  At the time of their electro-plating, the metals are subject to tension forces which can be so intense as to spoil the deposit in two ways (Figure 16):


Cracks


Flaking

Figura 16

Figure 16 : Examples of cohesion defects in nickel-plating. Top, cracks in the plating after sample bending; bottom, plate flaking after sample bending.

In some cases, cohesion problems not caused by internal stress between the metal contacts can occur. In these cases, the deposit becomes fragile due to hydrogen development
(hydrogen embrittlement), a common sub-product in galvanic processes. To avoid this, lower tensions can be adopted or appropriate solution agents that limit hydrogen development can be used.

3.2. Most common causes of defect

There are many reasons why a plate can have defects and, as described above, a defect can often be due to more than one thing. Vice versa, the cause of a defect can appear in more than one type of defect. Making a detailed list of all the possible defects and their causes without contextualizing them
to one specific galvanic process can be extremely complicated and incomplete. Nevertheless, generally speaking, it is possible to group defect causes into three categories:


Defects due to not respecting the parameters:

This category includes defects due to not having respected the characteristic parameters recommended on the technical form for the specific electrolytic system and defects due to using inadequate instruments, such as damaged anodes or different anodes to the recommended type, partially oxidized cables,
inadequate electrical equipment, etc…


Defects due to improper preparation:

This category groups defects that arise due to the absence or incorrect execution of one or more preparatory steps prior to electro-plating.


Defects due to using inadequate products:

This group refers to solutions formulated with low quality chemical substances or plating baths where not all the values are within the functional parameters (pH, density, metal qualities, etc…).

Except for rare and exceptional cases, statistically, almost all defects originate either due to not having correctly respected all the characteristic galvanic plating parameters or because the objects to be plated were not prepared by faithfully following the procedure.

3.2.1 Defects due to not respecting the characteristic galvanic process parameters

The defects due to not respecting the parameters of a specific galvanic solution are among the most immediate and most easy to resolve defects. In fact, all that needs to be done is to correct the parameter in order to return to obtaining a good quality plate. Therefore, going back over the typical parameters
of a solution, the most probable causes of the defect can be found:


Incorrect potential difference:

Usually, working with tension values that are too high or too low compared to recommendations leads to adhesion problems in the electro-formed plating. To be more precise, working at a potential that is too low leads to the possibility of an inhomogeneous distribution of the metal deposit and, in the
case of alloys, compromises its percentage composition with changes in colour and in chemical-physical properties. Working at a potential that is too high, on the other hand, besides possible deposit colour variation, can also lead to burning or dark spots on the plate (Figure 17).

Figura 17

Figure 17 : Pink gold plating carried out at different potential differences. Working with tensions below the range (right), the alloy becomes richer in gold content and the plating takes on a more yellow look than the correct alloy deposited by working with the right tension value (left).


Incorrect current density:

Substantially the same defects can occur when tension values are incorrect since the two parameters are correlated. That is to say, burning, poor deposit adhesion, spots on the plate or a different colour to that foreseen in the case of alloy plating.


Incorrect temperature:

It is important to work at the right temperature since excessive temperatures generally cause the deposit to burn, either due to the excessive amount of current at the cathode or because the heat tends to destroy the solution additives which, consequently, will no longer perform their levelling and brightening
actions on the deposit. On the other hand, if the temperature is too low, the deposit will not be uniform or, in the most extreme cases, may even be lacking. Working at incorrect temperatures produces different conductivity conditions that can generate significant effects when metal alloys are
being deposited, such as discoloration or a different composition of the alloy with the consequent variation in the chemical-physical properties or plating costs (Figure 18).

Figura 18

Figure 18 : Example of a sample plated with ruthenium at a lower temperature than the work range. The central area (low current density) has no deposition at all, the peripheral areas (high current density) have irregular plating.


Incorrect deposition time:

Increasing deposition time certainly gives greater thicknesses but exceeding the times can cause dull deposits, dark spots or deposit cohesion problems. Too short a time can generate adhesion defects or cloudiness or the colour of the plate can be irregular or not the right shade in the case of alloy
plating.


Incorrect cathode efficiency:

This is not a processing parameter but, as mentioned earlier, it depends on previous parameters and influences the quality of the plate. It may be lower compared to predictions due to a low metal or conductive salt concentration in the solution or because of too many additives. In these cases, problems
of adhesion and cloudiness may occur or the deposit may be thinner than expected. If cathode efficiency is too high, it may lead to burning.

3.2.2. Defects due to improper preparation

Improperly preparing the surfaces to be plated or using inadequate instruments are the most common causes of defects and, at the same time, are those that are the most neglected. Often, thinking that the preparation procedure is unimportant, the operator tries to improve the quality of the deposit by
acting on the deposition parameters or, to a worse degree, by intervening on the chemistry of the galvanic solution and therefore running the risk of definitively compromising the entire process.

Below is a list of the most common defects associated to an improper preparation of the items to be plated:


Polishing:

If the object to be treated is excessively porous, the galvanic plating will certainly not be able to eliminate the porosity, the plate will not be homogeneous and will probably have adhesion problems as well as dark spots or pitting. The deposit will simply follow the surface morphology and, in the
case of extremely bright deposits, this inhomogeneity will be even more evident (Figure 19).

Figura 19

Figure 19 : Comparison between a rhodium-plated sample that was not polished prior to plating and one that was.


Ultrasonic cleaning:


This cleaning removes polishing pastes and organic contamination. If not carried out, any residue on the surface can cause white or dark spots, adhesion problems or pitting.


Degreasing:

This is definitely the most important step in activating the surfaces to be electro-plated. If not correctly carried out, it can lead to irregular plating or adhesion problems and the majority of focal defects such as white spots, cloudiness, dark post-oxidation spots, pitting and bubbles (Figure 20).

Figura 20

Figure 20 : Examples of defects found on rhodium-plated samples previously degreased with expired degreaser.


Neutralization and washing:

Statistically these are the phases that are more often neglected during surface preparation. Not correctly carrying them out usually leads to white or dark spots, pitting, bubbles and also the possibility of contaminating the galvanic solution which can consequently lead to further defects generated
by contaminants.

3.2.3. Defects due to using inadequate products

These are the least probable causes of defects especially if extremely common plating baths are used like, for example, those for gold and rhodium plating. Nevertheless, when using the solution, organic or inorganic contaminations can be introduced which, in turn, can lead to defects such as white or
dark spots, cloudiness, bubbles or adhesion problems.

In the case of high-volume galvanic baths, the use of the bath and drag-out factors consume the electrolytic solution components, which then have to be reset. Not doing so will lead to a series of defects such as burning or cloudiness. Solution component consumption can also provoke a change in solution
pH, which can cause defects such as burning, cloudiness, spots, adhesion problems or, lastly, can also determine the onset of metal deterioration factors.

Resetting the galvanic bath components must be carried out by carefully following the technical instructions in order to prevent adding too much, which could generate further defects.

If there is an excess of organic additives, for example, the content can be reduced by active carbon treatments (g). This procedure is also useful for removing organic pollution. If the solution has been contaminated inorganically, selective precipitation methods can be used or dummy plating can be carried
out which will electro-deposit these inorganic contaminants, thus reducing their concentration in the electrolytic system.

Continue reading

The Italian jewellery sector in 2018

The Italian jewellery sector in 2018

The third quarter of 2018 registered a positive trend in global demand for gold jewellery with an authentic leap in quantity (+6%) after the feeble or negative data recorded in the previous quarters. According to the World Gold Council, the weakness in gold prices encouraged purchases, especially in
India (recovering after downturns during the previous quarters), in China (also favoured by Qixi, China’s equivalent of St. Valentine’s Day) and in many other markets in South East Asia. Middle Eastern countries, however, were still in difficulty, according to statistics released by the World Gold
Council.

Fig. 1 – Global demand

 Source: Intesa Sanpaolo World Gold Council data processing – Gold Demand Trend

The leap in global jewellery demand compared with a fall in prices, is a factor also reflected in Italian export dynamics. In the third quarter, in fact, with the negative trend in gold jewellery exports continuing (with a

-8.8% variation in Euro values) clashed with a particularly brilliant 2017. Quantity, on the other hand, developed with a significant leap forward (+35.7%), which implies brusque movements in average unit values (AUV, values divided by quantities).

 Fig. 2 – Gold jewellery export development * (% var. trend)

 Note: (*) Code 711319. Source: Intesa Sanpaolo Istat data processing

In the overall first nine months, foreign sales dropped by 4.1% in value, while they increased by 20.8% in quantity (to a total sum of 28 tons), implying a reduction in average unit values of about 20% in most countries.

The geographic details show how the fall in values in Euro was common to almost all the main destinations with the exception of the United States (+3.2%), the United Kingdom (+27.2%) and South Africa (+12%). In the same way, the growth trend in quantity involved every country with only the United
Arab Emirates registering a drop of 15.2%, confirming it as one of the markets where Made in Italy gold jewellery sales are suffering most greatly.

Table 1 – Development of gold jewellery exports * in the first nine months of  2018 (var. % trend var.)

Note: (*) Code 711319. Source: Intesa Sanpaolo Istat data processing

The French result particularly stands out: shipments of gold jewellery to France in the first nine months of 2018 actually grew by 86.6%, equal to 7 tons more compared to the same period in 2017, with a concurrent collapse in average unit values of over 50%, which could also reflect changes
in transfer price setting within French multi-national groups whose jewellery production is based in Italy. In fact, it should be pointed out how last year’s implied average unit values regarding export flows from Italy to France had reached particularly high levels compared to the average
national figure (with a leap of 32%). It would therefore seem to be a sort of “normalization” of the average values recorded in the previous years. The data concerning the third quarter highlight a recovery in positive export rates towards France, even in terms of values (+16%).

The quantity of gold jewellery exported towards the United States also registered a considerable increase (+51.4%, equal to 5 additional tons), underlining this market’s strong interest in Italian jewellery, in this case, also expressed in value data.

The positive trend in quantities sold abroad is coherent with the even greater growth development in the sector’s industrial production index (which includes costume jewellery and silverware). Production recorded an 8.3% increase in the first 10 months with a new significant acceleration
in the month of October, marking an extremely high development rate (although slower than the +17.4% average in 2017), clearly higher than the +2.6% average trend registered by Italian manufacturing in the same period.  

Fig.  3 – Development in industrial production index (trend % var., raw data)

Fig.  4 – Development in turnover index (trend % var., raw data)

 Source: ISTAT data processing

 Source: ISTAT data processing

The turnover index (which is in value) also continued to grow, although in this case, the slowdown compared to 2017 data was such as to take the fine and costume jewellery sector to the same rates as manufacturing.

On a territorial scale, where the data are only available in value and for the aggregate, which includes costume jewellery, the first nine months of the year confirmed the national downtrend. In more detail, in the overall nine months, Vicenza recorded the most pronounced reduction in
values (-4.8%), with a clear worsening in the summer months (the difference recorded between July and September 2018 and the same period in 2017 was -8.1%). The third quarter in Arezzo also saw a notable arrest in exports (-7.1%), which took the figure for the first nine months to
-2.3%. In the Valenza Po district, export rates (again negative) remained stable in the first part of the year (measured with the relative figure for the entire provincial area, as were the other production poles).

Fig. 5 – Fine and costume jewellery export development (trend % var. in value regarding provincial data)

Source: ISTAT data processing

To be more precise, in Vicenza the negative data involved many markets, especially the emerging ones: Hong Kong (-16.4% in the first nine months), United Arab Emirates (-19.2%), Jordan (‑32.4%), Romania

(-22.3%) and Turkey (-12.8%). Authentic collapses in export values to Jordan (-56.4%) and Turkey (-42%) played leading roles in the summer months and particularly stood out.

However, the opposite is also to be underlined for the United States (the top market outlet in 2017) which recorded an average stable trend in the first nine months of the year and an improvement in the third quarter. Signs of recovery also in exports to the United Kingdom (in the
wake of a negative result in 2017), which, with the third quarter data, seems to have stemmed the fall. Direct exports to South Africa were also good and clearly speeded up in the third quarter.

Tab. 2 –Vicenza gold district exports

Source: ISTAT data processing

Arezzo district’s exports are also continuing to feel the effect of significant and continual drops in the United Arab Emirates (-17.9% between January and September, with a -27% in the third quarter). Like Vicenza then, Arezzo also saw a brusque downturn of sales to Turkey with
a ‑26.7% reported over the summer months. Results relating to the USA, on the other hand, improved, taking the district back into positive figures between July and September, although enough to be able to report an overall growth rate for the first nine months of 2018
(-8.2%). Compared to Vicenza, however, Arezzo managed to maintain sales to Hong Kong at good levels: after the exceptional +21.6% of 2017, Arezzo exports grew by 1.8% in the first nine months. The development rate of the French market (which stayed around +20%) was also good.
Lastly, the excellent sales results, although at limited levels, in Panama and Lebanon are also well worth mentioning.

Tab. 3 –Arezzo gold district exports

Source: ISTAT data processing

Exports in the Valenza Po district, however, were decidedly more focused from a geographical point of view, with almost three quarters of sales made in Switzerland and France. As highlighted also on a national level, the result towards France was what particularly conditioned
the overall data.  In the first nine months of 2018, jewellery shipments from Valenza to France experienced a drop of 20.9% to then improve significantly over the summer. More recent data regarding exports to Switzerland, on the other hand, showed an abrupt downturn (-10.3%)
after a more energetic start to the year, something which also occurred for exports to the USA (-9.8% in the third quarter which, in any case, concluded the first nine months with an overall positive result of +3%). After the extraordinary +55.2% of 2017, direct exports
to Hong Kong finished badly (-14.6%, plummeting to -25.6% in the July to September period).

Tab. 4 –Valenza Po gold district exports

Source: ISTAT data processing

The prospects for the closing months of the year seem set towards cautious optimism. The awakening in global demand, although in a context of considerable uncertainty, leads to a belief in the probable continuation, also in the latter part of the year, of the trends revealed
by the first. We expect that demand from Asian markets and the United States will continue to be vigorous while demand in the Middle Eastern countries will continue to meet with difficulties

The prospects for 2019 appear more uncertain, influenced by the possible recovery in precious metal and gem prices (see the next paragraph) which could have a negative impact on the signs of jewellery demand recovery recorded in the second half of 2018. In any case, in
our scenario, the price of gold should remain – on an annual average – around 1,250 USD an ounce, a level just slightly lower than that of 2018.

Continue reading

Directions in 2020 and technological innovation for jewellery

DIRECTIONS IN 2020 AND TECHNOLOGICAL INNOVATION FOR JEWELLERY

Paola De Luca

Co-Founder & Creative Director at Trendvisions Jewellery + Forecasting, IEG Italy

Paola De Luca, in 2010, together with Italian Exhibition Group S.p.A. – organizer of VICENZAORO, one of the world’s leading international Jewellery Show – co-founded TRENDVISION Jewellery + Forecasting, an independent observatory focusing on trend forecasting for the jewellery industry where she supports the project as its Creative Director. Starting her career in New York in in 1989, she landed her first job as a designer for Fendi Jewellery and Watches. She later collaborated with leading luxury brands, such as Salvatore Ferragamo, Harry Winston, and Swarovski among other prestigious associations. In 2002, in partnership with CRU Group of London, she established TJF Group Ltd. For a decade, TJF Group focused on research and forecasting, launching the unique “TJF Trend book”, which became the world’s first and most authoritative jewellery trends publication. In 2010 Paola started an exciting collaboration with Rio Tinto Diamonds supporting as Design Director, their global design program. As Creative Director she leads design projects; educational programmes for buyers, government organisations; brands and manufacturers; she coordinates researches think tanks and market trends-focused projects. She is the Founder of The Futurist Ltd., a firm specialised in Forecasting and Creative Intelligence.

DIRECTIONS IN 2020 AND TECHNOLOGICAL INNOVATION FOR JEWELLERY

Download the presentation

 

Continue reading

Mechanical processing: focusing on critical points

MECHANICAL PROCESSING: FOCUSING ON CRITICAL POINTS

Andrea Friso

Product Division Manager – Legor Group S.p.A. – Bressanvido VI – IT

Andrea Friso performs at Legor Group S.p.A. as Sales Division Manager of Master Alloys. Materials engineering graduated in 2003, he starts his cooperation with Legor Group in 2004 by writing his graduation thesis about �innovatively colored gold alloys�. He is the company business role operating
between sales force, production and R&D, relying upon matured professional experience on the different product types and their positioning on different markets. He supports sales forces on commercial planning and the achievement of objectives together with their periodic control. He cooperates
with the technical and R&D dept. as for development, enhancement and promotion of products.

This piece aims to concentrate on a few fundamental aspects as to why the plastic deformation of an alloy is so important in the gold smithery production world and then exemplify typical errors which occur in production, triggering a chain of problems which are difficult to correct at the
end of the process. The aim of this piece is to accompany participants along a few logical paths they may find useful for thinking over certain cause/effect aspects pertaining to the plastic deformation production process. One of the most common cases of defects in mechanical processing
is obtaining semi-finished products with fragility or residual tension issues, with individual or a combination of causes and which may sometimes be difficult to pin-point. On average, current processes are also more complex than even a decade ago, due to their greater complexity or more
stringent quality controls.

Download the presentation

 

Continue reading

Improving your investment casting process

Improving your investment casting process

JÖRG FISCHER-BÜHNER

Consultant in Research & Development

Dr. Jörg Fischer-Bühner holds a PhD. in physical metallurgy and materials technology of the technical university RWTH Aachen. Since October 2007 he is active in Research & Development with Legor Group Srl, Italy, and Indutherm GmbH, Germany. Before he was Head of the Physical Metallurgy and Precious Metals Research division of FEM, the German Research Institute for Precious Metals and Metal Chemistry.

Download the presentation

 

Continue reading

Oro artigianale estratto in maniera responsabile: una panoramica delle comunità minerarie peruviane e colombiane

Oro artigianale estratto in maniera responsabile: una panoramica delle comunità minerarie peruviane e colombiane

Che cos’è l’ASM (Artisanal and small-scale mining), cioè l’estrazione artigianale e su piccola scala?

L’attività di estrazione artigianale e su piccola scala può essere descritta come un’estrazione a “bassa intensità”, che riguarda tutti i tipi di estrazione, dai depositi alluvionali all’estrazione in roccia dura1. Le stime variano, ma in generale si calcola che l’ASM fornisca circa il 20% dell’oro estratto
ogni anno, impiegando circa l’80% della popolazione dedita all’attività mineraria. Le attività tendono ad essere informali, con un ridottissimo utilizzo di tecnologie e ad alta intensità di lavoro. In molti casi i minatori utilizzano attrezzi manuali come martelli e scalpelli, mentre le attività più
avanzate si servono al massimo di piccole attrezzature da scavo come i retroescavatori e i dumper. Le comunità ASM tendono inoltre ad essere molto emarginate e hanno scarso accesso alle risorse, in particolare al sostegno statale o industriale. In molti casi la necessità di estrarre i metalli è determinata
dalla povertà e le attività minerarie sono spesso escluse dal normale circuito delle banche, tanto che molte di queste non hanno conti bancari o accesso al credito. Una triste conseguenza di tutto questo è che molte sono costrette a diverse forme di attività criminali.

L’obiettivo di entrambe le organizzazioni Fairmined e Fairtrade consiste proprio nel migliorare tale situazione. Grazie all’introduzione di norme in grado di garantire che tutto l’oro e l’argento prodotto nelle miniere artigianali e su piccola scala, certificate dall’organizzazione pertinente, siano
estratti in modo responsabile, è possibile migliorare la vita e le condizioni di lavoro dei minatori e delle comunità minerarie. Una volta che la miniera viene certificata, non solo è garantito un prezzo equo per i metalli che essa vende, ma anche un sovrapprezzo che l’acquirente deve pagare direttamente
alla miniera per ogni grammo di oro e argento acquistato.

Va sottolineato che non viene estratto abbastanza oro ASM per soddisfare l’intera domanda di oro, sia per la gioielleria che per l’elettronica o per usi medici. Lo scopo di un approvvigionamento responsabile non è quello di soppiantare l’industria mineraria su scala industriale, ma di migliorare le condizioni
di vita e di lavoro dei minatori e delle comunità minerarie nei paesi in via di sviluppo. Molti clienti, in particolare quelli descritti come Generation X e Millennials, hanno abitudini di acquisto diverse e meno tradizionali. Tali clienti pretendono una storia, qualcosa a cui potersi relazionare, vogliono
che i loro acquisti facciano la differenza dal punto di vista sociale e ambientale. Questo rende l’approvvigionamento responsabile di oro e argento molto importante nell’attuale mercato della gioielleria.

Figura 1. Minatori della miniera di Sotrami, Perù.

La figura 1 mostra un marito e una moglie che lavorano nella miniera di Sotrami a Santa Filomena in Perù. Si tratta di una miniera di piccole dimensioni che impiega 700 lavoratori, 160 dei quali sono minatori che lavorano al fronte della miniera. Alcune miniere sono di proprietà privata, altre, come
quella di Sotrami, operano come cooperative, mentre altre sono gestite da operatori indipendenti o da singole famiglie.

Utilizzo del mercurio.

Fairmined e Fairtrade si occupano delle comunità minerarie nei paesi in via di sviluppo, nelle quali vi sono molti problemi collegati all’estrazione artigianale e su piccola scala non regolamentata. Uno dei problemi più gravi è l’utilizzo del mercurio. L’estrazione dell’oro tramite il mercurio è un processo
relativamente economico, semplice e veloce. Il minerale contenente oro viene frantumato in un materiale di consistenza simile alla sabbia e il mercurio viene poi mescolato ad esso, di solito con le mani e in molti casi anche con i piedi. L’amalgama che ne risulta viene poi separato dagli scarti e il
mercurio viene bruciato al fine di ottenere l’oro che avrà una purezza del 75-80% circa.

Figura 2. Utilizzo di mercurio per estrarre oro dal minerale.2

Figura 3. Amalgama di mercurio e oro2.

Figura 4. Il mercurio viene bruciato3.

Purtroppo il mercurio è anche altamente tossico, e non solo il mercurio liquido. Anche i fumi derivanti dalla combustione del mercurio sono molto tossici. Un’esposizione massiccia e prolungata causa danni irreversibili al corpo umano. L’avvelenamento da mercurio danneggia il cervello, il cuore, i polmoni,
i reni e il sistema immunitario. Ciò determina malformazioni alla nascita per molti bambini nati da madri che hanno subito un avvelenamento da mercurio, bambini con ritardi nell’apprendimento e con livelli di intelligenza inferiori alla norma. La contaminazione da mercurio si ripercuote anche sull’ecosistema
circostante: acqua, piante, pesci e animali vengono tutti colpiti. A causa del fenomeno del bioaccumulo, il mercurio penetra tutta la catena alimentare e tende ad accumularsi e aumentare la sua concentrazione in alcune specie vegetali e animali.4 Questo è uno dei motivi principali per cui sarebbe bene
acquistare oro e argento ASM certificati, proprio per garantire che il mercurio non sia stato utilizzato nel processo di estrazione dell’oro.

Criteri per la certificazione delle miniere.

Affinché una miniera possa ottenere la certificazione Fairmined o Fairtrade, devono essere soddisfatti alcuni criteri (1,5,6):

Le miniere sono tenute a partecipare allo sviluppo sociale delle loro comunità,

e devono perciò eliminare il lavoro minorile dalla loro organizzazione. Nessun soggetto con età inferiore ai 15 anni può essere assunto a lavorare nell’organizzazione mineraria e i minori di 18 anni devono lavorare in condizioni non pericolose.

Deve essere implementata una procedura di formazione in materia di salute e sicurezza per tutti i dipendenti e devono essere rispettati gli standard minimi di salute e sicurezza. L’uso obbligatorio di attrezzature per la protezione dell’individuo deve essere sempre rispettato e applicato, e le condizioni
di lavoro devono essere costantemente migliorate.

Le miniere devono riconoscere e rispettare il diritto dei lavoratori a formare o aderire a sindacati e negoziare collettivamente le loro condizioni di lavoro, cioè la libertà di associazione e di contrattazione collettiva.

L’uso responsabile di prodotti chimici è obbligatorio. Se viene utilizzato del mercurio nel processo di estrazione deve essere controllato e si devono concordare piani e scadenze per eliminarne del tutto l’uso. Qualora venga utilizzato il trattamento con il cianuro, è essenziale che venga maneggiato
in modo responsabile. Le sostanze chimiche devono essere ridotte al minimo e, ove possibile, eliminate entro un periodo di tempo concordato.

Qualunque sovrapprezzo pagato nell’ambito dei sistemi di certificazione Fairmined e Fairtrade deve essere gestito in modo responsabile.

Perché i metalli Fairmined e Fairtrade costano così tanto?

La sezione precedente descrive le regole base che le organizzazioni minerarie devono accettare e implementare al fine di conformarsi agli standard e ed essere idonee ad applicare il sovrapprezzo. Dal punto di vista del gioielliere, alcune delle domande più frequenti quando si cerca di acquistare oro
e argento artigianali di provenienza responsabile sono: perché costa così tanto? Dove vanno a finire questi soldi aggiuntivi? E per cosa vengono utilizzati? Sono tutte domande corrette perché l’oro e l’argento con certificazione ASM sono costosi e il gioielliere paga un prezzo superiore a quello di
mercato per i materiali che acquista.

Normalmente l’oro e l’argento acquistati dai fornitori di materiali per gioielleria sono già presenti nel paese. Basta chiamare il proprio fornitore di lingotti o il proprio raffinatore per acquistarli. Tuttavia, a meno che la vostra azienda non si trovi in Perù, Colombia, Bolivia, Mongolia o in alcuni
paesi africani, i metalli Fairmined e Fairtrade non sono presenti nel paese e devono essere esportati dalla miniera e poi importati nel paese in cui svolgete la vostra attività.

Sia Fairmined che Fairtrade utilizzano lo stesso sistema di base. Una percentuale fissa del prezzo di mercato dell’oro o dell’argento viene concordata tra la miniera e l’azienda che acquista i metalli, garantendo così alla miniera un prezzo equo per il suo prodotto. Le procedure di acquisto Fairmined
e Fairtrade regolano questo aspetto per evitare che le miniere vengano sfruttate. Oltre a tale percentuale concordata rispetto al prezzo di mercato dell’oro o dell’argento, l’acquirente paga direttamente alla miniera anche un prezzo per ogni grammo di metallo pregiato acquistato. Tutte le commissioni
sono pagate prima della spedizione dei metalli dalla miniera. Inoltre ci sono costi di trasporto, assicurazione e logistica necessari per trasportare i metalli dalla miniera all’aeroporto, passando per la dogana, su un aereo diretto nel paese di destinazione, passando per un’altra dogana, e infine dall’aeroporto
di arrivo al vostro stabilimento.

Tutto questo può sembrare un po’ complesso, ma così facendo, i minatori ottengono un equo valore di mercato per i metalli venduti e il pagamento del sovrapprezzo direttamente alla miniera, sovrapprezzo che viene poi speso sia per i miglioramenti della miniera che della comunità. Tale somma aggiuntiva
viene normalmente, ma non esclusivamente, depositata presso una banca e quando raggiunge un certo importo, o dopo che è trascorso un certo periodo di tempo, i gestori che si occupano della miniera o i proprietari della cooperativa decidono come spenderla. Di solito i gestori sono responsabili nelle
loro scelte, che vengono monitorate, e ascoltano la comunità prima di decidere sul da farsi, ma le somme vengono comunque spese per il bene della miniera e della comunità.

Alcuni esempi di come vengono spesi tali somme aggiuntive sono le attrezzature per la sicurezza, gli interventi medici, i collegamenti alla rete elettrica o all’acqua corrente, o la costruzione di scuole e luoghi di culto. Nel caso di una delle miniere visitate dall’autore, i responsabili hanno deciso
che il denaro sarebbe stato meglio speso per l’energia elettrica, e perciò hanno cablato la cittadina. L’anno successivo stavano valutando l’opportunità di creare una rete idrica, poiché tutta l’acqua deve essere consegnata giornalmente con dei camion fino alla miniera. Ma, dopo essersi consultati,
hanno deciso di acquistare una torre per cellulari. Molti dei lavoratori della miniera non vivono stabilmente sul posto ma vi lavorano in base a turni della durata di tre settimane, quindi la comunicazione con la casa e la famiglia è importante per loro, ed è per questo che si è optato per una torre
dedicata ai cellulari.

Un’altra delle opere realizzate è stato un campo da calcio. Hanno costruito un altopiano con le rocce di scarto derivanti dalle attività di estrazione mineraria e poi ci hanno costruito il campo sopra (in realtà ne hanno due presso questa miniera, uno a circa 1.900 metri e un altro a 2.750 metri). Per
i minatori e la comunità in generale, si è trattato di soldi spesi molto bene. I lavoratori hanno ora un’attività sportiva che possono praticare sia per mantenersi in forma sia per divertirsi, e hanno persino creato una propria lega che coinvolge altre miniere, migliorando così le relazioni fra le diverse
comunità.

Figura 5. La torre dei cellulari presso la miniera di Sotrami, in Perù.

Figura 6. Campo da calcio presso la miniera di Sotrami, Perù.

Questi sono solo due degli esempi relativi a ciò a cui il denaro Fairmined e Fairtrade ha contribuito per una comunità mineraria. Questo denaro produce effetti positivi contribuendo a migliorare il lavoro, l’ambiente sociale e la comunità. E tale aspetto riguarda tutte le miniere Fairmined e Fairtrade.

Sia in Perù che in Colombia esistono due diversi tipi di attività mineraria ASM, cioè l’attività mineraria regolamentata e quella non regolamentata.

Attività mineraria regolamentata

L’industria mineraria rappresenta solo una piccola percentuale del PIL in Colombia, ma per il Perù circa il 15% del PIL proviene dall’estrazione regolamentata. Non esistono cifre attendibili relative al numero di miniere “in nero” o “non regolamentate”. Il governo vuole che tutte le attività minerarie
siano legali e regolamentate per una serie di motivi. In primo luogo per incrementare la base imponibile e contribuire a far crescere l’economia. Le entrate derivanti dalla tassazione vengono utilizzate per molti progetti e servizi infrastrutturali come la costruzione di strade e l’edilizia in generale,
l’assistenza medica e l’istruzione, solo per citarne alcuni. Il governo intende inoltre implementare norme sanitarie e di sicurezza per salvaguardare i minatori e sradicare la criminalità e lo sfruttamento. Al fine di incoraggiare e incentivare i minatori a lavorare legalmente e in maniera regolamentata,
il governo offre alle miniere regolamentate un rimborso fiscale del 5% per ogni chilo d’oro esportato.

Attività mineraria non regolamentata

Le miniere non regolamentate sono esattamente come descritte e vengono considerate illegali. Non ci sono regole e i minatori spesso lavorano per pochi soldi in pessime condizioni. I minatori non regolamentati possono morire a causa delle loro condizioni di lavoro, della scarsa salute e sicurezza, dell’uso
di mercurio e di altre sostanze chimiche. Vengono inoltre sfruttati in vari modi dai criminali e purtroppo per molti di loro non c’è via d’uscita da questa situazione.

Le miniere non regolamentate sono normalmente ubicate in aree remote e difficili da raggiungere. Quelle osservate dall’autore in Perù erano spesso ad alta quota in zone montuose, prive di collegamenti o sentieri, e a decine di chilometri dalle strade asfaltate più vicine. Tutto ciò che serve per l’attività
estrattiva deve essere portato fino alla miniera a dorso d’asino o a mano. Provviste come cibo e acqua, utensili e attrezzature, legname per puntellare le gallerie al fine di renderle sicure, mercurio per la lavorazione del minerale, tutti questi rifornimenti devono essere trasportati nelle aree remote
dove sono collocate le miniere. Il tasso di mortalità dei minatori è relativamente alto. Le gallerie spesso non vengono puntellate perché è prima necessario portare il legname alla zona generale e poi su per la montagna, perciò spesso i minatori evitano di farlo e il peggio accade producendo un collasso
delle gallerie. Anche i problemi di avvelenamento da mercurio sono frequenti. Negli ultimi anni, su richiesta del governo peruviano, il dottore responsabile del centro medico di Sotrami ha analizzato campioni di sangue dei minatori non regolamentati e ha riscontrato livelli di mercurio superiori ai
limiti legali di sicurezza. Di conseguenza, i proprietari delle miniere non regolamentate non hanno permesso di effettuare ulteriori test per timore di subire una chiusura forzosa. I minatori non regolamentati hanno bisogno di lavoro e perciò, come detto in precedenza, sono intrappolati in questa situazione.

Miniere di Macdesa e Sotrami, Perù.

Le miniere di Macdesa e Sotrami si trovano rispettivamente nelle province di Chaparra e Lucanas in Perù, a circa 600 km a sud di Lima e all’incirca tra Nazca e Arequipa. Entrambe queste province si trovano nel deserto di Atacama, che è il luogo più secco della Terra. Si tratta di una regione prevalentemente
montuosa e desertica, dove la polvere ha la stessa finezza del cemento. E’ un ambiente molto difficile in cui vivere e lavorare. 

La miniera di Macdesa è nata da un semplice buco nel terreno come tutte le altre miniere della regione. Molte di queste miniere furono abbandonate dopo l’indipendenza del Perù dalla Spagna nel 1821. Quando la gente ha iniziato a riprendere le attività minerarie, fatto questo relativamente recente, l’area
è divenuta un vero e proprio far west, con gruppi minerari rivali che si combattevano fra loro. I minatori si guadagnavano a malapena da vivere, la sicurezza era inesistente e la vita era molto dura. Di conseguenza a Macdesa, circa 350 minatori concordarono che l’unico modo per migliorare la situazione
era quello di collaborare e formare una comunità.

Macdesa si trova a circa 1.500 metri di altitudine e all’inizio i minatori usavano attrezzi da lavoro e carriole per trasportare il minerale dalla miniera. Riempivano sacchi di minerale da circa 60 kg nella miniera e li caricavano poi sugli asini. Una volta che gli animali erano carichi, camminavano
per 50 chilometri giù per la montagna fino allo stabilimento di lavorazione vicino alla costa e all’autostrada principale. Tuttavia i minatori venivano sfruttati e ricevevano solo l’80% circa del valore di mercato del metallo. Come se questo non bastasse, le bilance e i campioni venivano truccati e
il minerale veniva lavorato in modo errato. Di conseguenza, solo raramente i minatori ricevevano un valore superiore al 50% dell’oro estratto.

Perciò, al fine di migliorare i rendimenti e i pagamenti, i minatori hanno iniziato a lavorare il minerale a mano con il mercurio, ma non avevano idea di quello che stavano facendo. Così hanno deciso di investire nelle loro tecnologie e di assumere persone che conoscevano queste tecniche. Anche nel caso
di Sotrami la situazione era analoga. I 350 “soci” – i fondatori – ricavavano appena il necessario per vivere. Il resto del denaro ricevuto per l’oro veniva reinvestito per risolvere problemi e migliorare i loro processi e i loro rendimenti. Altri interventi effettuati comprendevano:

Acquisto di adeguate attrezzature per la trivellazione.

Realizzazione di strade in pietra e sterrate per far salire e scendere i camion dall’impianto di lavorazione alla miniera.

Miglioramento degli alloggi per i minatori e le loro famiglie.

Investimento in attrezzature per la sicurezza e implementazione di un programma di formazione per tutti i lavoratori.

Miglioramento delle condizioni di lavoro presso la miniera. Pompaggio di aria all’interno delle miniere al fine di prevenire problemi polmonari. Puntellamento delle pareti e dei soffitti in modo da rendere sicuri i tunnel. Installazione di binari ferroviari per consentire ai minatori di spostare facilmente
il minerale dalla miniera all’interno dei tunnel.

Avvio di test sul minerale direttamente in loco. In questo modo hanno potuto sapere esattamente quale fosse la purezza del minerale estratto e quindi quali rendimenti attendersi.

Hanno inoltre sviluppato processi di trattamento del minerale senza l’uso del mercurio.

Hanno acquistato una macchina alesatrice, che permette loro di testare le perforazioni effettuate e vedere in che direzione si estende la vena, riducendo notevolmente la quantità di scavi necessaria e aumentando la resa di minerale recuperato rispetto a quello estratto.

La storia della miniera Sotrami è simile. I fondatori hanno creato la miniera trent’anni fa e il villaggio di Santa Filomena è cresciuto intorno alla miniera a circa 2.750 metri di altitudine. La popolazione di Santa Filomena è di circa 2.000 persone, di cui 700 lavorano direttamente per la miniera,
mentre la restante popolazione è impiegata in occupazioni volte a sostenere la produzione della miniera. Come a Macdesa, tutti i profitti vengono reinvestiti nella miniera e nella comunità. I lavoratori sono tenuti a prestare servizio per 20 giorni ed hanno diritto a 10 giorni di ferie non retribuite,
di solito con turni di undici ore. Molti minatori vivono lontano dalla miniera e nel corso dei 10 giorni di riposo tornano a casa per vedere la famiglia, anche se alcuni hanno portato lì le loro famiglie, soprattutto se entrambi i genitori lavorano in miniera.

Molto spesso, i governi locali e nazionali vedono l’industria mineraria come un’industria in crescita. Grazie al sindaco della città locale di Challa, che ha coinvolto anche il governo centrale, sono stati posati 40 km di strada asfaltata che collega la miniera alla principale autostrada della costa
pacifica, dimezzando così i tempi di percorrenza fino alla miniera. Gli abitanti delle zone ad altitudini meno elevate hanno approfittato della strada e hanno iniziato a coltivare, perché grazie alla strada possono coltivare i loro prodotti e trasportarli facilmente fino al mercato senza danneggiarli
durante il tragitto. In molti casi, quando le attività di estrazione mineraria hanno successo, sono in grado di generare indirettamente opportunità anche per altri. La strada è importante anche per altri motivi, uno dei quali è che a Sotrami non c’è acqua corrente. Tutta l’acqua di cui hanno bisogno
viene trasportata in montagna tre volte al giorno con tre autocarri.

In genere, nulla va sprecato. La roccia di scarto invece di essere buttata, viene utilizzata per apportare migliorie. La roccia di scarto viene utilizzata al fine di creare aree pianeggianti edificabili in modo da espandere le strutture intorno alla miniera e gli edifici del villaggio.

Figura 7. Rocce di scarto utilizzate per creare uno spazio edificabile pianeggiante a Sotrami, in Perù.

Macdesa ha tre gallerie all’interno della miniera, mentre Sotrami ne ha solo una e tutti i minatori devono entrare ed uscire dalla miniera attraverso questo ingresso e da questo pozzo. La miniera è profonda 630 metri, è composta da 13 livelli, e ci vogliono 35 minuti per scendere e 45 minuti per risalire
dopo aver terminato il proprio turno di lavoro.

Figura 8. L’entrata della miniera di Sotrami, in Perù.

Figura 9. Il pozzo di ingresso di Sotrami, in Perù.

Figura 10. Una delle gallerie di Sotrami, in Perù

All’interno della miniera, il legname viene utilizzato per puntellare la volta, ma generalmente l’illuminazione è presente solo nel luogo in cui si scava e, per sicurezza, lungo le rotaie destinate al trasporto del minerale estratto. Sebbene tutto il legname debba essere trasportato dalla costa perché
non ci sono alberi nelle vicinanze delle miniere, l’aspetto positivo è che il clima è così secco che non ci sono microbi in grado di intaccare il legno e i fenomeni di putrefazione non rappresentano in genere un problema.

Le attrezzature di sicurezza devono essere indossate da tutti quando si è in profondità nelle miniere, in particolare elmetti e soprattutto i respiratori, perché l’unica costante è la polvere. Le particelle di polvere possono causare seri problemi polmonari se i minatori non sono protetti. Si tratta
di una situazione molto differente rispetto alle miniere della Colombia, che si trovano in un ambiente completamente diverso.

Lavorazione del minerale: la roccia dura.

Per quanto riguarda la lavorazione del minerale, entrambe le miniere utilizzano processi simili. Entrambe le comunità in origine utilizzavano il mercurio, ma ne hanno poi compreso la tossicità per se stessi e per l’ambiente, ed hanno così optato per l’utilizzo del cianuro, molto più rispettoso dell’ambiente.

Figura 11. Grande cilindro a rotazione.

Il minerale viene prima frantumato e poi lavorato fino a raggiungere la consistenza della sabbia in un grande cilindro a rotazione. L’acqua viene introdotta per facilitare il processo di frantumazione e per formare un impasto, che esce dal cilindro attraverso un filtro, facendo in modo che le particelle
siano sufficientemente piccole per la lavorazione downstream. Una volta filtrato, il liquame viene pompato in vasche di trattamento contenenti cianuro. L’oro presente viene portato a galla nella soluzione di cianuro e viene poi pompato in vasche di reazione contenenti particelle di carbone attivo. Le
particelle di carbone attivo hanno all’incirca le dimensioni di un chicco di riso e attirano l’oro, catturandolo quando si trova in sospensione. Normalmente vengono utilizzati tre serbatoi in sequenza al fine di massimizzare il recupero dell’oro; tale procedura raccoglie complessivamente il 96% dell’oro
che viene immesso sotto forma di minerale frantumato.

A questo punto, la soluzione di cianuro usata viene smaltita nelle vasche per la raccolta del cianuro di scarto. Tutta questa procedura può sembrare pericolosa, ma è in realtà sicura per l’ambiente e non deve essere confusa con il processo di lisciviazione del cianuro, in cui la sostanza chimica viene
esposta al minerale senza alcun trattamento ed entra in contatto diretto con l’ecosistema senza nessun vincolo o contenimento, oppure con protezioni insufficienti. Le vasche per il cianuro di scarto sono dotate di membrane molto resistenti e i liquidi di scarto vengono trattati chimicamente in modo
che quando sono esposti alla luce ultravioletta si convertono in carbonati, così da eliminare le sostanze tossiche dalle vasche. Una volta riempite, le vasche vengono coperte e poi interrate o utilizzate per costruzioni.

Figura 12. Il filtro per i liquami.

Figura 13. Vasche con carbone attivo.

Figura 14. Vasca per il cianuro di scarto. La fotografia è stata scattata da una precedente vasca che è stata riempita, coperta e interrata.

Figura 15. Rete di elettrodi in acciaio all’interno della vasca per la placcatura.

La parte successiva del processo consiste nel filtrare le particelle di carbonio cariche d’oro dalle vasche, trasferirle in una cella elettrolitica e poi continuare con la placcatura dell’oro su una rete d’acciaio. Una volta che questa fase del processo è stata completata, la parte finale consiste nel
collocare la rete d’acciaio carica d’oro in un forno, in modo tale che l’oro si fonda e venga trasformato in lingotti di oro grezzo. La purezza dell’oro è a quel punto nell’ordine dell’80% e il prodotto può essere ulteriormente lavorato o venduto sul mercato come oro grezzo.

Come vengono spese le somme aggiuntive.

Come detto in precedenza, le somme aggiuntive sono state spese per vari progetti: reti elettriche, acqua corrente, torri per cellulari e campi da calcio. Se ai minatori viene chiesto perché fanno quello che fanno e perché sono felici di ottenere la certificazione Fairmined and Fairtrade, avranno molte
ragioni da addurre. Tra queste la salvaguardia ambientale, le migliori condizioni di lavoro, la prosperità, ma tutti concordano sul fatto che una delle ragioni principali sono i loro figli. Si tratta di imprese relativamente recenti e i minatori vogliono che i loro figli abbiano una vita e delle opportunità
migliori di quelle che hanno avuto loro. Questi minatori non avevano praticamente nulla, hanno creato imprese e fondato delle comunità, e stanno cominciando a vivere meglio.

Un ottimo esempio in questo senso sono le loro scuole. A Macdesa i soldi sono stati spesi per la scuola materna e la scuola elementare, che sono edifici in muratura permanenti, recintati, puliti, sicuri e dotati di computer. Ai bambini viene insegnato l’uso del computer e di internet in tenera età, e
nel doposcuola anche agli adulti viene insegnata l’informatica, e quindi è evidente che i soldi sono stati ben spesi.

Figura 16. La scuola elementare di Macdesa.

Figura 17. Computer acquistati grazie alle somme aggiuntive Fairmined e Fairtrade.

I minatori di Sotrami hanno utilizzato i soldi aggiuntivi in modo simile. Sotrami vanta un ottimo centro medico e tale centro è molto importante non solo per la miniera, ma anche per l’intera comunità circostante. La miniera finanzia questi progetti grazie alle somme aggiuntive pagate per il minerale,
ma permette a chiunque ne abbia bisogno di usufruirne, indipendentemente dal fatto che lavorino presso la miniera o meno. Viene visto come un dovere nei confronti della comunità. Il centro medico è ben attrezzato e ha un dottore presente sul posto in maniera permanente. Il prossimo oggetto che desiderano
è un’apparecchiatura a raggi X. Immaginate di dover percorrere 70 km giù per una montagna lungo strade sterrate per effettuare delle radiografie a causa di una frattura.

Le miniere peruviane discusse finora rappresentano delle storie di successo, e lo stesso si può dire per le miniere colombiane.

Le miniere di Iquira, Coodmilla e Gualconda in Colombia.

Le miniere d’oro in Colombia che tratteremo in questa sede sono più piccole delle miniere peruviane. La miniera di Iquira si trova nel distretto di Huila, mentre le miniere di Coodmilla e Gualconda si trovano nel distretto di Narino, entrambe aree molto rigogliose e a quote elevate. Come nel caso delle
miniere peruviane, le miniere di Narino sono ubicate in aree remote e a circa quattro ore di macchina lungo strade sterrate dalla più vicina autostrada.

In Colombia esistono molti degli stessi problemi relativi alle attività minerarie regolamentate e non regolamentate, come è stato notato per il Perù, e fino a poco tempo fa molte zone della Colombia erano pericolose e di fatto inaccessibili agli stranieri. Tuttora sono molte le attività minerarie illegali
che il governo colombiano vorrebbe regolamentare, ma al momento l’implementazione di tali regole si è rivelata un problema. Dire semplicemente ai minatori che non hanno più diritto ad estrarre il minerale senza fornire loro alcuna alternativa, non funziona. La maggior parte delle comunità non ha un’alternativa
e quindi torna a lavorare nelle miniere illegali per sopravvivere. La Colombia ha vietato per legge l’uso del mercurio, ma è difficile applicare tali norme per vari motivi. Il governo colombiano ha recentemente modificato le norme relative alle banche in funzione anticorruzione e antiterrorismo. Una
conseguenza di ciò è che diverse organizzazioni minerarie hanno perso la capacità di esportare il loro oro, anche se Fairmined sta collaborando con le miniere e il governo per cambiare questa situazione.

La cooperativa di Iquira si trova a sud-ovest di Bogotà, nella regione di Huila in Colombia. Questa regione è famosa per il caffè e infatti alcuni dei minatori di Iquira coltivano anche il caffè. Le miniere si trovavano sulle loro terre, e i contadini sapevano bene che l’oro era lì, ma non hanno iniziato
ad estrarre il minerale fino al 2004, quando si sono organizzati in una cooperativa di 11 azionisti. Già nel 2010 i soci della cooperativa erano diventati 35, di cui 8 donne, e la cooperativa possiede 11 miniere legalmente registrate. Inizialmente vendevano il loro oro in modo informale al mercato locale,
ma la certificazione Fairmined ha dato loro la possibilità di esportare.

Figura 18. Narino, Colombia7.

Ogni miniera rappresenta un’attività separata, ma tutte lavorano come una cooperativa a fini bancari, di vendita e di esportazione, ottenendo così prezzi migliori e costi ridotti. Si tratta di miniere relativamente piccole che scendono in profondità per circa 500 metri nella montagna su uno, due o tre
livelli. Circa il 20% dell’occupazione a Iquira è attribuibile alla cooperativa e tutti i lavoratori provengono dalla regione.

Figura 19. L’entrata di una miniera a Iquira in Colombia.

Le miniere colombiane sono inoltre molto diverse da quelle del Perù per quanto riguarda le condizioni ambientali. Mentre le miniere peruviane sono molto secche e polverose a causa dell’aridità della regione, le miniere colombiane sono molto umide. L’acqua scorre attraverso la roccia porosa e lungo uno
strato di quarzo contenente oro che è impermeabile, e di conseguenza l’acqua arriva fino alla miniera. I minatori raccontano che ricercano proprio quest’acqua, perché dove c’è acqua, c’è oro.

Tutte le miniere dispongono di sistemi di sicurezza, necessari per essere idonei a ottenere la certificazione e le somme aggiuntive. Ogni miniera è dotata di un sistema di rilevamento del gas e di un sistema di allarme per proteggere i lavoratori, oltre ad aree di sicurezza utilizzate in caso di fughe
di gas o crolli. Tutte le miniere e gli impianti di lavorazione sono dotati di kit di pronto soccorso e tutti i lavoratori dispongono delle necessarie attrezzature per la protezione individuale. Alcune miniere della cooperativa impiegano donne per maneggiare gli esplosivi ed effettuare le esplosioni,
ma anche per lavorare direttamente nella miniera.

Figura 20. Un’area di sicurezza presso la miniera di XXXX

Figura 21. Minatori in Colombia1.

Figura 22. Sacchi di minerale in attesa di essere trasportati all’impianto di lavorazione.

Figura 23. Sacchi di minerale nel laboratorio destinato alla frantumazione presso Iquira, in Colombia.

Una volta estratto e insaccato, il minerale viene trasportato all’impianto di lavorazione. Ogni sacco contiene circa 50 kg di minerale che viene lavorato in modo simile a quello utilizzato nelle miniere peruviane, tranne che su scala più piccola. A causa della natura dei depositi, dopo la frantumazione,
viene utilizzato un tavolo di flottazione per separare l’oro dalle particelle contenenti oro. Non utilizzano il carbone attivo ma vasche di decantazione e lasciano che le soluzioni ricche d’oro si separino per gravità prima di essere ulteriormente trasformate in lingotti di oro grezzo. Nelle miniere
di Coodmilla e Gualconda, nel distretto di Narino, si usa un processo molto simile: la frantumazione seguita da un tavolo di flottazione e da un trattamento al cianuro.

Figura 24. Il tavolo di flottazione di Gualconda, in Colombia.

Figura 25. L’oro separato dagli scarti dopo il trattamento nella vasca di decantazione.

La cooperativa di Coodmilla, un’organizzazione senza scopo di lucro, è attiva da quarant’anni e possiede quattro miniere, due delle quali hanno ottenuto la certificazione Fairmined. Le loro licenze comprendono cento ettari di terra, ma attualmente ne lavorano circa tre ettari. Purtroppo sia Coodmilla
che Gualconda non hanno alcuna certificazione al momento, ma non a causa delle procedure di estrazione del minerale. Hanno difficoltà a soddisfare i nuovi requisiti bancari descritti sopra. Fairmined sta collaborando con loro e con il governo colombiano per risolvere la questione.

Figura 26. Una vena di quarzo contenente oro.

Figura 27. La miniera di Gualconda a Narino, in Colombia.

Entrambe le miniere si trovano in aree remote. Gualconda è stata costruita nella giungla sfruttando il pendio naturale della collina per i processi di lavorazione. Almeno nel caso di Gualconda, il percorso di crescita si è rivelato fino ad oggi complesso. Nel 1974 l’estrazione avveniva completamente
a mano tramite attrezzi da lavoro e mercurio, ed erano necessari 466 grammi di mercurio per lavorare una tonnellata di minerale. Una volta utilizzato, questo mercurio di scarto veniva gettato direttamente nel fiume e quindi nell’ecosistema. La miniera ha fatto grandi progressi per quanto concerne la
bonifica dei siti contaminati da mercurio, ma vi sono ancora tracce del mercurio utilizzato per il processo di lavorazione che devono essere bonificate.

Figura 28. Il sito contaminato dal mercurio presso Gualconda.

Tra il 2001 e il 2006 la miniera è stata chiusa a causa del conflitto armato che ha coinvolto forze paramilitari e i coltivatori di coca. Per questo circa un centinaio di famiglie sono state sfollate ed hanno abbandonato la zona per andare ad abitare nella vicina città, ma i minatori affermano che la
vita in città non era fatta per loro. Nel 2006 hanno costituito la loro cooperativa, ma la loro politica ASM era appena agli inizi e molto carente per quanto riguarda la lavorazione del minerale e la tutela dell’ambiente. Tra il 2009 e il 2013 non avevano ancora a disposizione l’energia elettrica per
le attrezzature, e per questo hanno costruito un mulino ad acqua utilizzando parti provenienti da un deposito di rottami. In quel periodo utilizzavano ancora il mercurio, ma avevano compreso che, per diventare produttori ASM responsabili, era necessario eliminare gradualmente l’uso del mercurio. Inizialmente
la loro politica consisteva nel riutilizzare il mercurio invece di gettarlo semplicemente nel fiume, evitando i danni ambientali e riducendo la quantità necessaria per trasformare una tonnellata di minerale dai precedenti 466 grammi a 25 grammi. Nel 2015 hanno finalmente ottenuto l’energia elettrica
fino alla miniera e questo ha permesso loro di riprogettare l’impianto di lavorazione, eliminando completamente il mercurio e adottando il processo a base di cianuro che utilizzano oggi, più ecologico e sicuro. Questo ha permesso loro di aumentare del 20% l’efficienza, ma ha anche prodotto un incremento
dei costi – il cianuro è più costoso del mercurio quando viene utilizzato per la lavorazione di minerali contenenti oro. Tuttavia l’aumento dell’efficienza e la consapevolezza che con la certificazione Fairmined avrebbero ottenuto prezzi migliori per il loro oro, oltre ad un sovrapprezzo, hanno reso
questo processo la scelta privilegiata per aiutarli a diventare produttori ASM responsabili. Dopo tre anni tale processo si è finalmente realizzato.

L’obiettivo dei minatori non è quello di fermarsi, ma di migliorare continuamente, e ciò include anche la bonifica dell’area della miniera rimanente in cui il mercurio è stato utilizzato per la lavorazione. Questa miniera è ora considerata un modello per l’estrazione ASM responsabile e ogni due settimane
si organizzano visite guidate per vedere cosa è stato realizzato e in che modo è stato possibile realizzarlo. Tutto questo sullo sfondo di una Colombia che continua a presentare molti conflitti sociali ed un elevato grado di corruzione: violenza e traffico di droga sono ancora prevalenti in queste zone.
Anche oggi molte licenze minerarie vengono assegnate a grandi miniere, ma le miniere indipendenti più piccole spesso vengono ignorate.

Perché utilizzare oro ASM estratto in maniera responsabile?

Ci sono molte ragioni per acquistare oro ASM estratto in maniera responsabile e con certificazione ASM. Può essere un buon modo per attirare più clienti nel proprio negozio e quindi può rappresentare un fattore positivo per ogni attività. Se la vostra base clienti è composta da persone anziane, l’introduzione
di una linea di prodotti che utilizza l’oro ASM può rivelarsi molto interessante sia per i giovani consumatori che acquistano gioielli, sia per i clienti che non hanno ancora considerato l’acquisto di gioielli in oro, poiché acquistare qualcosa che fa la differenza nel mondo risulta interessante ai
loro occhi. Ci sono gioiellieri che hanno deciso di convertirsi completamente all’oro Fairtrade e Fairmined, o almeno il più possibile, anche se non è indispensabile apportare modifiche così drastiche. Qualunque cambiamento può aiutare e non c’è assolutamente nessun obbligo, non è necessaria la conversione
totale di ogni prodotto d’oro che si vende. Molti gioiellieri che optano per l’oro ASM iniziano con una linea o una collezione, e, se hanno successo o se l’idea si rivela adatta alla propria clientela, espandono la loro offerta. Si tratta di un prodotto con alle spalle una storia: da dove proviene l’oro,
a cosa serve il sovrapprezzo pagato. Acquistare questi prodotti significa ripagare le comunità dei paesi in via di sviluppo per migliorare la loro qualità di vita. Anche solo questo aspetto basta spesso ai clienti per acquistare gioielli realizzati con l’oro ASM.

Come è possibile acquistare l’oro ASM?

Il modo migliore per acquistare l’oro ASM è quello di contattare Fairtrade o Fairmined (ARM) tramite i rispettivi siti web, e in questo modo otterrete un elenco di fornitori e gioiellieri registrati e certificati dalle stesse organizzazioni. Entrambe le organizzazioni hanno sistemi simili: se si desidera
usare il nome e il marchio Fairtrade o Fairmined, è necessario essere in possesso di regolare licenza. A seconda del proprio volume d’affari, può essere necessario versare un contributo per ottenere la licenza, sottoporsi ad una revisione contabile e pagare una commissione all’organizzazione per ogni
grammo d’oro venduto. Se non si desidera utilizzare il nome o il marchio, è comunque possibile acquistare l’oro – non ci sono restrizioni sull’acquisto. In questo caso potrete comunque chiamarlo oro proveniente da miniere artigianali, ma non potrete chiamarlo Fairmined o Fairtrade.

L’obiettivo di ogni azienda consiste nel generare profitti. Tuttavia quest’oro è relativamente costoso e quindi per mantenerlo il più attraente possibile per il consumatore, si consiglia di non aggiungere al prezzo di vendita dei prodotti Fairmined e Fairtrade il sovrapprezzo che è stato pagato alla
miniera. Per mantenere il costo di ogni pezzo il più basso possibile, chiedete al fornitore di comunicarvi il costo dell’oro acquistato come se non avesse la certificazione Fairtrade o Fairmined. Tale prezzo può essere utilizzato per calcolare il ricarico e quindi il costo del sovrapprezzo aggiunto
alla fine. Più oro Fairmined e Fairtrade si vende, più grande sarà il contributo offerto per migliorare la vita dei minatori e delle comunità minerarie.

Conclusioni.

La provenienza dell’oro da gioielleria rappresenta una scelta personale per il gioielliere. I fornitori di oro decidono come comportarsi – in maniera responsabile o meno – e di conseguenza i gioiellieri possono decidere dove e presso chi acquistare. La scelta c’è. I gioiellieri che vogliono partecipare
all’iniziativa di approvvigionamento responsabile possono farlo. Ci sono tre soluzioni principali tra cui scegliere:

Oro estratto in modo responsabile ma su scala industriale. Laddove vi sono controlli e revisioni, sarete in grado di capire da dove proviene l’oro e potrete informare di ciò i vostri clienti.

Oro prodotto al 100% da materiali riciclati al 100%. Questa fonte di approvvigionamento ha già pagato il suo prezzo in termini ambientali, e scegliendo questa opzione si ottiene, probabilmente l’oro in assoluto più rispettoso dell’ambiente, poiché si utilizza quanto è già stato estratto.

Oro estratto in modo responsabile da comunità ASM. Questa scelta aiuta direttamente le comunità minerarie dei paesi in via di sviluppo a migliorare le loro condizioni di lavoro, il loro ambiente e la loro vita in generale.

Oppure si può scegliere di non partecipare affatto, è una scelta personale. Ma si tenga presente che

  • un approccio responsabile può ripagare anche in termini economici.
  • Tutto l’oro è stato estratto da qualche parte.
  • L’obiettivo di tutti dovrebbe essere quello di eliminare le attività di estrazione non responsabili dal nostro settore.
  • Devono esserci trasparenza e tracciabilità dalla miniera e/o dal riciclatore fino al rivenditore al dettaglio.
  • C’è ancora bisogno di una maggiore informazione sia all’interno del settore che tra i consumatori.

Infine, si può dire che l’oro ASM sia diverso da tutto il resto dell’oro? La risposta, ovviamente, è no, non è in alcun modo differente. L’oro è oro, in qualunque modo lo si produca. Tuttavia, ciò che lo rende diverso è il luogo di provenienza, il modo in cui lo si ottiene, e il prezzo ambientale e sociale
che viene pagato per farlo arrivare fino a noi.

Riferimenti

www.fairmined.org

Fotografie:
www.artisanalgold.org

Fotografie: Marieke Heemskerk

en.wikipedia.org/Mercury_poisoning

www.fairtrade.org.uk

www.responsiblemines.org

Fotografie: Fairmined Family

Continue reading